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/" We can give a quick proof of these claims about the existence of all mo-

heorem (or
ation theorem) which we shall subsequently prove. Accord-
m the dissipation that results when an external field is
m is simply related to the fluctuations in thermodynamic
equilibrium. Thus our discussion of " (w) or y{w) is literally as indicated in
the first paragraph, a calculation of the behavior of the oscillator when no

fluctuation-dissip
ing to this theore

~external forces are applied.

Specifically, the Nyquist theorem says that
(1) X(1)eq, = C(D)Veq. X Veq. = (KO X(1))ea)
= Ao e T 26(w) y ()] 7
27
where ¢(w) is the mean energy of an oscillator with natural freguency o at
temperaturc kT = -7, that s,

1 1 {
gw) = ho| — + - —. 28)
A v 2 mmwa — 1 | class. m A

Thus the statement we previously indicated was a general sum rule

dw 1 (29)

— () w = —
7 m

is at least classically, just the statement

1 2 dw m 1
= x2S = | — — oy (w) = —kT 303
5 X3 2 B 1 (@) 5 (30

i.e., the statement that the mean kinetic energy of the oscillator is 3 &T.
But by exactly the same kind of argument, we have
: , 3

. s = [ AL ) (1)

x f
A d"x(1) EN do "}
¢ S = | %' (w (32)
e ) x P 2@

" and the thermodynamic average of the squares of the higher derivatives of
" the position are all finite. One can, for example, calculate {EA(D) directly
for an oscillator interacting with particles by a potential Y v(x(#) — x. (D),

deducing T T
(DY = T 0 = —— o
m m
w2 = 1| dPrg(r) V2u(r) + o5 (33)
Im
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érwﬁo g(r) is the equilibrium correlation function between the medium and
oscillator.

It is ﬁommmzo. to incorporate this “sum rule” by modifying our simplest
mwgoaanoﬂomam_ model. In particular we may introduce a description
like the ones mBEowo.a by Drude and Maxwell at the turn of the century.
We suppose that the induced internal force satisfies the phenomenological

SCF ™ e,

~ H m% Int
m. n
A v:.o. —

mMoS{x)n e,
ot

which interpolates between the high frequency reactive behavior character-

ized by (33), and the low frequency phenomenological d i
el 2 o p gical damping when

%AN.L:”V:.? =

(34

2
ASS - SWV

miot 2 5 )
T gy VT @0 0. (33)
This phenomenological law, which of course is still
- . 2 ﬁ
since it predicts ill not really adequate

SQR:AQC ImWInW. =
7T

@0,

gives a familiar kind* of expression for ¥(z), namely, for Im z > 0,

(0% — wd)rzi

-1 . 2 2
r~ (@)= —m|z? — wg + ; %HASMIE@.?

1 —izz (36)
Fﬁmm& .om mn:.oa:om.:m successively more satisfactory phenomenological
%ms.%:wbm ei:or. will always be somewhat ad hoc, let us write the almost
ﬁwﬁoVHom_o& equation (which we shall also discuss more formally at a later
stage

1@ = —mlz? — 0l + izy(2)]. (37

In this equation we have replaced the unknown response function y(z) by
an equally unknown function 9(z)

do’ y'(w") , o
y(2) = d«ﬂ;l&”l%@v.*.s\ (W) asz=w +ie—>0w (38
" & ! ’ !
y'(w) = —P do’ (@) (39)

T w—-w

in which y(z) is mmmo&.&& with the phenomenological law. For an oscillator
of the wa.m considered, symmetry properties require that y’'(w) is real, even
and positive so the oscillator is described by

do y'(w)

12 = —m| 22 — wh + 22 >

(40)

T w? —z?
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or

() 1 wy' ()
W) = — - —.
* m (w* — o5 — oy (@))? + m:&&?&vz

These expressions in terms of y rigorously describe the properties of an
oscillator coupled to its surroundings in any time-reversal invariant system.
The great variety of possible behaviors manifests itself in the diverse
possibilities for p(z). Depending on the coupling there may be one or many
“wrenormalized” natural frequencies, @, of the oscillator, that is, solutions

_to the equation
V (42)

@

—2

&> — wy — ay'(@) = 0.

These solutions will be of interest if the quantity wy'(w)is smalland slowly
“ varying near @& since, in the neighborhood of @, they correspond to reson-
ances.* They will be true normal modes of the oscillator if (@) = 0.

In the neighborhood of a relatively well defined mode or resonant Sie-
quency, @, we may write

¥ 1 Z(®) 7' (@)
x(0) = — - ——
m (w2 — &%) + (@7 (@)?
N
:vx:ﬁﬁcv m ||.—o\| NA&VNV Am\vv Ah.wv
2m (o — @) + (37(@))?
" where we have introduced
7(@) = Z(0)y' (@) (44)
and
Z- Y @)= 1 —- 9 ay"'(@). (45)
0in?

The quantity 7'(@) is the half-width at half-height of the resonance and
describes the rate at which the ocillator amplitude decays. The energy of the
oscillator, quadratic in the amplitude, decays at the rate 7'(@) in the neigh-
“borhood of the resonance. The quantity, Z(®), the renormalization constant,
represents the strength or fraction of the oscillator motion which partici-
pates in the approximate normal mode, @, of the coupled system; or more
precisely, (when 7 is small but not zero) in the many normal modes centered
‘about @. Because »’ is positive, dwy”(@)/dw* < 0, so that the fraction,
D), in any normal mode is less than unity. Describing each resonance,
, there are three parameters; resonant frequency, lifetime, and
“strength. For the uncoupled oscillator, @ = tw,, 7' (@) = 0, and Z(@) = 1.

If the oscillator were coupled to a single other oscillator with frequency @,
‘we would have®

v'(w) = 7l Swy — w?).

_ There would then be two normal modes; two roots &} and @2, BEach woul M.
-+ have infinite lifetime (7'(@,) = 0) and Z(@,) + Z(@,) = 1. See Fig. 8. ;
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Fig. 8(a). The absorption wy(w) for an uncoupled oscillator. (b) The absorption
wy(w) for an oscillator coupled to another oscillator, the normal frequencies of the

pair being w; and ;. The quantity Z, represents the fraction of the first oscillator dis-
placement in the first (normalized) normal mode.

An example of the way a coupled oscillator exhibits both normal modes
is provided in a recent experiment by one of the participants in these lec-
tures, Dr. Wright. In an experiment in which Raman scattering by a longi-
tudinal optical phonon was observed® he found that by altering the carrier
concentration in GaAs he could alter the plasma frequency, w,, and the
coupling of the plasma mode to the longitudinal optical mode, w;. The
resultant y(w) is schematically given by

2

-1 2 cw
27 (2) o N~I§+||=|N
w; —z

(46)

The variation of the two resultant peaks with 2 is shown in Fig. 9.
The weak coupling to infinitely many modes, by contrast, will frequently
lead to a reduction in Z(@) from unity at a single resonance, without the

appearance of any additional resonance. These properties are depicted in
Fig. 10.
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Fig. 10. The absorption in an oscillator coupled to O many degrees of freedom, as in

Fig. 7. The significance of the renormalized frequency @, the half width %'(®), and the
strength Z(w), are shown.

The oscillator strength, originally lodged in the discrete mode is now shared
among the infinitely many modes of the coupled system. Part of it, a frac-
tion defined by Z, is shared in a fashion described by a Lorentzian, over
nearby modes. The remainder is divided in a model dependent fashion.
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Fig. 9. Experimental illustration of coupled modes. Because the longitudinal ocm_»o_c_
mode in GaAs is coupled to the plasma mode according :w Eq. (46), <E%m_m: of the
carrier concentration, 7, and hence the plasma frequency ©p == - [11.4 > 1 a:i\n_j
alters (a) the frequencies of the coupled modes w; and ®;, wda @w :JM m:,\\:. Nm_ 1s
each mode. The other constants in Eq. (46)are ¢ == [1.29 X 10°]em™= and ;= em”
In (¢) some typical tracings are shown.
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The simple model we have been discussing is not as experimentally
accessible as some more complicated examples. The three dimensional
analog, however, is exemplified by the motion of tagged particle (the oscilla-
tor) in a fluid (say a noble liquid) and this motion, self diffusion, is accessible
to neutron studies. Actually, the most reliable *“measurement” of it are not
these neutron studies but computer studies 7-* in which the average proper-
ties of a particle in the fluid are determined by computing the dynamical
behavior of particles interacting by van der Waals forces. The quantity,
wy!'(w), is exhibited for one value of the temperature and density in argon
in Fig. 11. Also plotted® in Fig. 12 are the functions y(w) and its Fourier
transform 7'(t — ). Plotted for comparison on the same graphs are the
Drude or Maxwell fit single collision time model, as obtained by Rice,'?
on the basis of rather more formidable arguments than Drude or Maxwell
would ascribe to such an interpolation procedure.

0.5 — ]
SINGLE RELAXATION
\ y(w)
GAUSSIAN
y'lw) EXPONENTIAL

3 y'(w)

=

N 0.10

€
Nk

0.05—

Y 5 10 15
w in 10'? sec™

Fig. 11. The absorptive response, '/, as determined by computer studies on liquid

wwAmov: and various fits in terms of phenomenological laws described by simple functions
).

.> second physical example, involving only oscillators, is the most sim-
plified version of the localised mode problem, a particle with a different
mass but the same spring constant placed in a crystal which we idealize
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Fig, 12a.The actual phenomenological function, y’, determined from the computer studies
and the fits.
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Fig. 12p. The phenomenological function 9(1) whose transform is ().

by a linear chain.'! The Hamiltonian for this system may be written s

2 7 2
H= M F. + a M ew&xpxu - nw gw om = m — n (47
® 2m 2 YW om
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where X, is the coordinate of the tagged particle whose mass is m. The

equations of motion are

%y + W@ew&& + W (6m) 800505, = 0. (48)

By the same technique employed earlier we have

w (— 2%, + Mwguy — 6mz* 8,0050) 15,(2) = 8,y (49)
This is a matrix equation for the matrix %> whose inverse is
[ (@]ap = —1(2%0,5 — 054p) — SMz20,000

= @lu@w om = 0)],; — 6mz?6,004. (50)

Let us denote the matrix y(z; dm = 0) as y°(z). Then we have

(4]
Rauﬂmv = N«%ANV - mENNRMOANv mc\%mv.
Since this equation implies that

= 0 0
we have %05 (2) = %0p(2) + Omzy00(2) go4(2)

1ap(2) = 20p(2) + Smz*gle(2) [1 — SmzyBa(2)] ™" 134(2),
and in particular, i
Nooﬁmv = mmo@ 1 — mSNNRMQANZ.L. (51)

The quantity yo0(2) is the correlati i
. ation function y(z) for the se i
We have for its correlation function #e) fected particle

272 = 1" Nz) — dmz® = —m[2? + izy(z)]. (52)

H . .

Mxo(2) = mz2y0(z) + 1;
Ko@) = Kool@) + ixon (@);

15/@) = 070" (@); () = p [ 22 o (@)

4 w —w

Then our equation for y(z) reduces to
omy(z) = my®(2) [(Alom) + 1 — Ay, ()]~ - (53)

WMQ; ma.zm:wso all En.a%gmobnm on m occurs through the explicit dm;
wOno@%mch.:Qg @.a independent of m. The dependence on m can there-
o e WSEG examined. > resonance in x(z) will occur when the real part
; he racketed expression vanishes and the imaginary part is slowly

arying over the width. The resonance will be infinitely sharp (a local mode)

if the imaginary part vanishes where the real p
case when m is sufficiently small). For larger n, but m which are still con-
siderably smaller than /7 and again for m > m, there will be a resonance, in
‘the first case near the top of the band, in the second near the bottom. When
m ~ 7 there is no resonance nor significant difference between y'" and 3.
“In Fig.13a the behavior of myo(w) and amxun?cv is plotted together with
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Fig. 13a. The spectrum of the perfect crystal. A plot of my%(w) and mygy'(w). Also
plotted are horizontal lines corresponding to different possible values for [ -+ m/dm].
Only with (1) does the intercept occur outside the continuum,
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Fig. 13b. The spectrum of the particle of differing mass. In the situation, (1), a loca
mode occurs. When m =2 m, (3) — (6) nothing dramatic happens. In other situations
2) and 7), a resonance OCCUTS. Qualitative graphs of mawy" (w) corresponding to the variou

intercepts in Fig. 13a are shown.
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(m[dm + 1) and in Fig. 13b the resultant mwy' (w) is plotted for various “calculate .
values of m. The analytical expression these curves describe is TrloA,(xn] = (A&, (2)

Eiam 077 hcv N& _ , 2 _ . -1
Awém L+ i) + G @)l . (s

1) = _where o is the density matrix. Let us suppose for simplicity, E.E., A ,aommvﬂﬂ
depend on the time explicitly but only Hraozmr. the av.\sm:z.om_ variables.
We may either look upon (2) in the Heisenberg picture, in which the o.@mﬁ.,
vable A(r7) changes in time because the dynamical <m.:m2mw on é_:.o: :.
depends evolve and the density mairix is unaltered, or in the Schroedinger
: M&Qﬁo in which A(r?) is time independent but the am@n:a.o:oo of the av\s.m-
mical variables on ¢ is accounted for by the time evolution of the density

_matrix. Independent of which picture we prefer we may write

(A ge. = TrloU ™ (tto) Ailrty) Ultte)] - (3)

B. Formal Development

Having illustrated various phenomena in term of this simple model, let
us consider these arguments from a more general and rigorous point of
view.'? In this microscopic discussion, which we shall carry out quantum
mechanically, the first and most important observation we wish to make
concerns the rigorous identification of 7”(+ — #) with an equilibrium corre-
lation function, 2 commutator (classically it would be a Poisson bracket).
Having made this identification we may systematically examine its proper-
ties—notably symmetries, sum rules, and dispersion relations. We shall for
example, see that the statement

dw

— 7@ =
7T

“where U(fto) is the unitary operator which describes the way the system
_changes in time and satisfies the Schroedinger equation

S% Ultto) = (Ho + Hex (1)) Ultto)
4

3|~

with the initial condition
is just the statement I

[, i 1.
AM [x(2), %v_vs -— {lp), xs_vs -—

T we let
Ultto) = Ug(tto) U'(tto)

From this microscopic viewpoint, the unproven statements we made ’ . L d — H.U., we obtain )
earlier about function y"'(w) will emerge. In particular, we shall deduce the where U, satisfies i - Uo oo o
Nyquist theorem. ,
=L U (1t0) = (U5 110) Howil) Unlito)) U'(119) ]
1. Time Dependent Perturbation Theory at
We turn first to a general classical or quantum mechanical description 3|a.. U'(tto) = Hey(t) U'(tlo)
of the effect of applying a weak external disturbance to a steady state. In dt \
mathematical terms, we suppose that prior to time 7, the system is described whose solution is v -
by a density matrix, g, which commutes with the time independent Hamil- ) ' .
tonian H,. Subsequent to #, an external disturbance is applied which couples : 1 13\? I Logamo oo ey
to the observable properties, 4,(rf), of the system. We describe this disturb- Ultte) =1+ — | Hou(t)dr' + ih v Hoal) | Healt (1" = 17) ..
ance by an additional term in the Hamiltonian N i I o
He()) = — [dr ¥ A,(rt) ay(rp). 6)) Lr \ @)
; = 7] exp (L % HL () v |- |
The functions a;(r¢) represent the generalized external forces, For example, i :
o

the observables might include components of the magnetization, in which
case the corresponding forces a; would be the components of the external
magnetic field. For our oscillator A(r7) — x(z) and a(rt) — Fe*(¢). To
calculate the expectation value at time 7 of the observable A; we must

Hw we denote by A(rf), the Heisenberg operators for the Hamiltonian Hy,

ie. .
AL = Uq H1to) Afrto) Uoltto) (5)
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then we may write L= fa), pu(1)), we may write to first order

TrloU ™' 44(xto) U] = TrlpU' ™ Al (xe) U’ —f A Ay v
0 0 ) U’ f=rs 7wu B o + O ) o
= Tr \m +..| ._,&n ,"& ZH) }A:z a,¥) |+ 6f=3 u&\%n:\v 0 -+ ~ dr FE (Y ———| 5
h P 0] . %QS
1o 1o

or, with the understanding that when there are no superscripts I, we are
discussing the steady state density matrix commuting with Hy and operators
which evolve according to it,

t
= .w, [fo(t), He(lpp. dt’

.H.Ew expression, like the one for the perturbed quantum mechanical density matrix, is oaly
seful for calculating expectation values of operators for generic measurable quantities-
functions of a few variables symmetrical in the many coordinates of the system and not
istinguishing among them, For these quantities, we have

t

oA xt)y = I .«. JALxD), A0’ p > ax't)y dv’ d’

Ao, = A + 3 % dr’ % ar (AG@D, A DD aE'r) + -

Ae J fo
We now define the absorptive response as the commutator " where as usual, the brackets indicate an ensemble average.
1 We now define
'y — 1) = 7 — ([A4(xD), 4,(x'1)]) M ekl —p Fur' st — o) = 2ip(t — ) 7Gx’ 0 — 1) (10)
do e 8 (A,(xt)y = _ ar’ % dt' g (o't — ) ar'e). (9"
= | — 7T ). ®) o

‘The function 7,,(m’; ¢ — 5 is the Fourier transform of the complex res-

In terms of x'* and the step function n( — ') we may write .vonwm %i(rr’; ). Moreover,

2 @) = g3 (' o) 4+ i’ o) an

s the boundary value as z approaches w on the real axis from above, of
- the analytic function of z

A?V&A?YW CTCOED) [dr [ 2drgees o — 0) a0ty in(t — 1) ©)

The corresponding classical expression is do'  yiey’ ;o)
A (12)

14 N—.—VA“H\‘“ Nv = P ’
o =z
0di(rr) = — M .ﬂ [Airt), 4,0't)]pp >a,(x't)
Ito It follows immediately from these equations that y' and y” satisfy Kra-

which leads us to define mers-Kronig relations,

rep

el = do’  yi@r'; o) Iﬁ» do’  xi(rr' o)

> X o) =

7T o — T w —

LA, Ar't))pp>-

o) =

o

(13)

(Being more explicit requires unfortunately complicated notation, i.e.,

_...anu.nAM AN BAMY) AW  dAEY) N
" D ) D) o) S

with 9A4,(r; ry(2), pLE))/or,(t) = 8A,(r; eLoU=r,(¢"), eLot—p (t)[or,(t"), the derivative
at time # with respect to the dynamical variable into which the variable at the common
time ¢’ has evolved under the hamiltonian Hy. This value is classically determined by the
Liouville operator L, associated with Hy by the above expression.) To prove the classical
version, we recall that if the system is described classically by a distribution function

: u Symmetry Properties of the Response Function

) Since yi/ is a commutator, it is antisymmetric under _Eoﬂo:m:mm of r
with r', [ with j, and ¢ with ¢'. We therefore have

=17

iyt — ) = =i’ 0 — 1)
g’ o) = — ' —). (14)
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- If the hamiltonian and ensemble involve a magnetic field or some other
property which changes sign under time reversal, then the more complicated

relation

E.v ,Eum fact that j is the commutator of Hermitian operators leads to
the identity

[Fir st — ) = —giax's ¢ — t), ie., 71} is imagi
NCA ’ vu ©., Xij 18 imaginary, N_wmﬂﬂﬂ\wcuw WV _ mmm.‘“&.mﬁﬂ‘ﬂw @, imv

isr’s )]* = — (' —w). (15) = —eeyirr'; —o; —B) (18)
(iii) The effect of (7) and (i), i.e., transposition and complex conjugation,

R r T is obtained because the density matrix of time reversed states is different.
implies that 7" is hermitian, i.e. :

As a result, for two operators with the same signature under time reversal
‘there will be an additional part of yJ/(rr’; w) which is odd in the field, B,
even in , imaginary, and antisymmetric in i, ¥ and j, v

' The symmetry properties of yxi(rr'; o, B) are determined from the

‘relation

[Zi(x’s ¢ — O = gji@r; ¢ = 1)
s o)]* = 2(r'r; w). (16)

The part of yx;'(rr; w) which is symmetric under interchange of i with j
.mna r with r’ is both real and odd in w while the antisymmetric part is
imaginary .m:a even in w. These statements imply in particular that if
N_ﬁd.a w) is spatially invariant (y; = y;/(Ir — r’|; w) it is real and odd
in the frequency. .

do' yifer’ ;o B) (0 + ®) (19)

7T w'? — w?

2wy B) = P

which means that they are identical apart from the interchange of evenness
and oddness in w. (For example, in our illustration, a Lorentz Force would

give rise to a term &; By in ;)

(iv) F general y;/(rr’; w) need not be real. More particularly its reality
properties are connected with time reversal. The effect of the antiunitary
operation, 6, on states of the system is to transform scalar products according
to (Ox|68) = {B|«). Corresponding to this transformation on the states
one has the similarity transformation on the operators 4, — A4; = 64,6~
and the composition law 4,4; — (4;4,;)’ = A4;A]. Moreover for observab-
wom Ay(rt), (which are described by Hermitian operators) the effect of apply-
ing the time reversal operator is to give another hermitian operator which
usually will have a definite signature ¢,

Aj(l) = 0A4,(rt) 6~ = g, d,(r — 1)

Aa.m.; ¢ = +1 for position, electric fields; ¢ = —1 for velocities and mag-
netic fields). We will then have

O14,(x), 4,')] 671 = [64,(r't) 67", 04,(x1) 071
= —ge,[Ar — 1), A;(¥' — 1')].

3, Identification of y'' with Dissipation

We may identify the work done with the explicit rate of change of the
hamiltonian and consequently associate the matrix y;/(rr’; ) with dissipa-
tion. In this case, there is not necessarily any reality property for the off
diagonal elements, or signature for the individual components. We have,
however, the statement that the rate of change of energy or the rate at which
work is done on the system is given by :5% rate of change of the

 expectation value of the hamiltonian b < }va 1D Sqpunts

.,,mwm = 3| <AlxDyn () dr gr rploat vt
: ! : - hv“__h.am . nﬁ?usw
£P

i

= Y, AL eq.ai(rt) dr + ), {drjdr’ dr'axt) 71y (st —t)a;('1")
iJ

-

+ (terms of order a*).  (20)

Consequently, whenever the Hamiltonian and the ensemble of states are

invariant under time reversal, since {x|Bla> = (Ax|(6B~1)! B> Thus the mean rate of change of energy in a monochromatic external

field

2

,l:..nl:ﬂ..i;\,wi....,.si,..r:,. S rT R ——— -1 —1i i
TOE5 1= 1) = See s d = 1) = el 1 — 1), | afe)) = Rean) e™ = Ha() " +ar® e
RRQ.H\WSV — lm.wm‘RRAHHJ —w) = mnmu&bmq‘nm w). W 17 18 mlzloﬁ by . ] Soqdang ﬂ.m )
| . EEpn\rrow). W i ‘ ‘ . et VT
This means that if 4, and 4, have the same signature under time reversal T ar =2 4 dr | dr'ai(®) s ) ar) | T
ij

r

2 (' @ is odd in w, real, and symmetric under interchange of i with j
andr ,S.E r’. If they have opposite signature, y}/(r’; w) is even, imaginary
and antisymmetric. !

— Ww dr | dr' afr) g, (005 — Svmwﬁqw (zh
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é\?o‘F in <\_.o<< of the symmetries y/(rr';ow) = — 2@
 in v / 4
2 @) = i (r'r; —w), becomes )

m,o IE. i ‘
: Hw_mno waves, a(r) = ae™ ', and translationally invariant systems, we
ave per unit volume and time ,

with

:

w\w\“ 4 ! @ St ’
~.M.~. &H"r&htﬁv dr %&N Q-.AHNVMI:R:A—;H 1t - N\v Q&.AH‘N\V ANA.V

in view of the antisymmetry of az/(rr’; t — ¢')/ar.
The expressions for a monochromatic field may be cast in an alternative
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r; —m) and probability. One might prefer to read this discussion in reverse considering
the result more familiar than the starting point.

. Unless the system is an amplifier and certainly for a system in thermal
equilibrium, we must have dissipation at each frequency,

aw 1

o T3y @) | A i o) a). @)

myiir; ) = 0.

From the Kramers-Kronig relation it then follows that the matrix y’ is
positive definite for low frequencies and negative definite at high frequencies.

1
v ﬁ“|vw\ = W aty ko) wa; This corresponds to the statement for a forced oscillator that at low fre-
. H quencies its displacement will be in the direction of the force, and therefore
non-dissipative, and at the high frequencies its response will be 180° out of
g1y’ w) = dk R ) whase and also non-dissipative. Dissipation, not amplification, occurs for
(27)* i ) (23) intermediate frequencies, and is peaked at the oscillator frequency, where

YéSOnAaNnce 0Ccurs.

4. Sum Rules or Moment Expansions

The short time or high frequency behavior of the correlation function may
be characterized in terms of the time derivatives or frequency moments of
- the correlation function, that is, in terms of the quantities

t

. . e ~ . ﬁ\ " 74t ﬁ\ﬁc n.tr ’
MNH.B ,%mdo_u is woavwﬁm more familiar by noting that they are equivalent to - A ~_M A,(xD), A,x't) = % — "y’ W)
1 m goden nﬁn. Specifically, by introducing an intermediate set of states ‘ ' g L. 7
la elled by E’ and other quantum numbers &, we obtain o | H1 H =8 d
— ¥ {0 .
aw ~tla,en, =1,—1.. ,m.w{/n —— i w). 28)
_ P N nﬂ v 5 7 uA v\ = X gA 4 v A

h

’ w re
i W; a._.,‘. dr'ay (r) 5 215’5 w) a ')
it — t)

157 H 7 3 ;
*EHI % d'a,() 4,0 |EE) — CBEI Y, % dr'a(c) A4/r) |EE')

i
—(E-E)t—1t" .
x e WETEN-)  pog _M M“L*, dray (r) A,(r) |E£)

E:...S H J.
€ SmW. xwm Amm_MM &Sw@\:ﬁc_m‘m\vmﬁm:m;:-s
i
¢E

do i o) 2 Laprr))

- awnw

N_..\Aﬂmk 2 Z) =

7 W —z z7

130 p odd

Ao [ 7075 0) | (29)

{wtyrr')y yu(r'; 0) =

| -F

T w

Weghw[Peg(hw) — Pyp(—hic)]}
(25) are only asymptotic. They hold rigorously only for frequencies higher than

where wy is the weight of the state £E in the ensemble, g,, .

Peg(hw) = il

mm the v.nogcm_.ﬁ.% wo.n absorption of energy fiw due to the presence of the
Interaction hamiltonian, and P.g(—7%w) the corresponding induced emission

any characteristic frequency of the system, and as they predict that
1,(r'; @) is negative, they are sensible asymptotically only when o i3
- large compared to all important frequency contributions to %"
The simplest illustration of these sum rules is the one we cited for the

oscillator

2

1
T T KEIST [ 40 12 + ok

L o oD = 92 pron (30
1

I
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which, for velocity i ; :
y independent forces, gives “and the fluctuation dissipation theorem in the form

&8 m N. Pr it s
— o) = — | = p(¢ N = ey, : Lo ) = hoo| A ! 2’ )
,‘, z AN \wm& ), x(2) == {weey #5:(0).  (31) 5 @, (rr's ) = ho 5 + T -
5. ¥l . e h fol . .
- Fluctuation Dissipation Theorems == coth-—= y3;(rr’; ™). (38)

For most situations the stationary ensemble which characterizes the

system is canonical, or in other words Itis the failure of the fluctuation &mmw@mmos theorem in a canonical or grand

canonical ensemble, when that ensemble is insufficient because there are
rder parameters, which provides the weak link in the apparent proof we
all give that fluid hydrodynamic equations are always correct. Its validity
in.more restrictive ensembles with specified order parameters leads to the
ppropriate hydrodynamic equations for these systems.

We =ePE muumw = ¢ FH =fH -1
E \Mm e =¢e "Tre”"7] (32)

where 8 = (kKT)~!. The time translation property of the weighting factor for

such a canonical ensemble and the cyclical property of the trace imply the

identiti . . .. . .
ntities Classically we may arrive at an analogous result by partially integrating with respect

py and 1y

Trle™" A (xt) A,(e0)] = Trld (e + i) €™ ()] ) )
— X | wdpl@) dig () | Aty = — 4 (1),
= Trle™P4,('r) Aet + i), (33) P () P
. @ «w ’ ‘ - o
Zo:..\oﬁﬁ HH.. [exp (~BH) A(rf)] is independent of time. Consequently ~ 0 At P A1) | e BHotaopa®),
provided the time Fourier transform _ We thereby obtain o ol :
3N . :
(i) — <A(rD>) (4,(r't) — (A, r))) =< >m m.... 7 LAY 205, Mt — 1) = —p ﬂmm Slarst— 1) = tmlwlx,@m?ﬁ t— 1)
= 3 (rele , dow - . !
= M.t@.n sl — Nv = ,_;MMMC A:..w SV e to(t—1t") Gnc \,«mlﬁﬂ.:, ) = |M|v ,wmf_\.év _ imuwh ﬂmﬁ._\“é

exists (and it will in a sufficiently specified ensemble), it satisfies “in accordance with the classical limit of the qguantum mechanical result.

Dispersion Relation for Response Function in Time Reversal Invariant

Syl o) = S, —0) @ TNT a0, ba
Systems

and therefore

ot 1 1S ) N, ik . . .
2@ w) = —(1 - e PMS 1 w) m..,w Ay hwﬁ ; &JW our previous discussion we used a dispersion relation'® which replaced
2h ! the unknown y(z) by the unknown y(z). To prove that this is possible it is
1 \ Nv.ﬂ&fw , W‘Kw “sufficient to note that for complex z, x(z) # 0 (because Im z y(z) # 0 whencver
= INMMQ? = D Sir'r; —w).y 22 (39) wy'(w) > 0). It then follows that y~'(z) is analytic, and consequently that
SRk ) w  the remainder we obtain when we subtract its leading term for large z
Likewise the transform of the symmetrized product < w:eweﬁﬂ : : 11z + [23<m?)] 271 (0),
3 {4 — <AD)), [4,('t) — (A4 SENID .\T ‘ is apalytic and approaches a constant at infinity. We may therefore write
; the difference either as
~ , &&8 Tt
= =) = ,. ~ (-1 ~ - _ ,
Qi1 — 1) S U @) e e (36) [—iz @Ko ¢ 0 or [(—iz P(2) + oK1z (0) (39)

~

where I" and p are analytic except on the real axis and approach zero as
<> 0. In the latter expression 2 may be chosen so that zp(z) approaches

zero as z — 0.

satisfies the identity

B

P’ w) = 3(1 + mlueJ Sy, o) (37



