Introduction

attention recently, and seen so much progress. These phenomena can be treated in the
language presented here but require a whole array of techniques not covered here.

Moreover, this is not a text about Green's functions and the elaborate
techniques usually combined under that label. (See Kadanoff and Baym 1962, Fetter
and Walecka 1971.) Green's function methods are methods to perform detailed
microscopic calculations, calculations which are always difficult, and often hard to
check. It is useful therefore and desirable to obtain, from fundamental principles,
constraints on such calculations. Most of the correlation functions which we will
discuss here are in fact closely related to one- and two-particle Green's functions.
And the results which we will derive =- sum rules, hydrodynamic limiting expressions
and others -~ provide restrictions which any fully microscopic theory must fulfil.

We will therefore, even when dealing with specific examples,
concentrate on the structural aspects of the theory, aim at results which bridge the
gap between microscopic equations of motion and macroscopically observeble
phenomena, and provide a common language in which experiments can be discussed
that are performed on o wide variety of physical systems and with a similar variety
of methods. A language which should be convenient for him or her who, when
analyzing light scattering data from liquid crystals, would like to draw on knowledge
of antiferromagnets or w,cva_,m_cmmm. The language of correlation functions is mathe-
matical, of course, but a determined effort has been made to concentrate on the
physical ideas involved, and tread lightly on questions of mathematical rigor. If |
have succeeded, those who do the real work, the experimentalists, should find in
this text a useful and intelligible bit of theory, and hopefully hove some fun while

reading it.
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CHAPTER 2
A SIMPLE EXAMPLE-- SPIN DIFFUSION

As a simple example which illustrates many of the points we shall discuss,
let us consider a fluid of uncharged particles with spin 1/2 (Kadanoff and Martin
1963). The essential assumption which makes this system so simple, is that the
particles interact through a velocity- and spin-independent force. This situation
is, in fact, realized to an excellent approximation in at least one real system,
liquid Imw. {Much of the subsequent analysis will, however, also apply to the
isotropic Heisenberg paramagnet, for example. See chopter 8 and e.g., Bennett
and Martin (1965 1 and Lubensky [1970al).

The spin of each particle can be taken to point either parallel (+) or
antiparallel (<) to some arbitrary direction of quantization. In order to simplify
things we will treat the spin as a scalar quantity; its vector character is of no
importance for our purposes. The magnetization, ,.sm_w t), is then simply proportional

- . «, . nd -+
to the difference in densities 3+?..& and n_(rt) at the space-time vom_iﬂl\ i.e.,

s

MG, = pin (70 -n (7,07, 2.1

where p is the spin magnetic moment of a particle. A more microscopic woy of

writing this operator is

4 4g

M(T,1) = T 2" o(V-1(1), (2.2)
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where the a-th particle has the _uom:mo:.uo_ (1) ot time t and the spin s which is
either 1/2 or -1/2. The 8-function sees to it that only those particles are counted
which at time t are found at or near the point . The assumption of spin-independent
forces is reflected in the fact that s¥ is constant in time.

In thermal equilibrium, n,=n_on the average so that M= 0. Now
assume that ot some initial time, t = 0, there is a local imbalance at point r so
that Z?H.Lnov # 0. We will be interested in the subsequent time development of
ZAN&. In our simple model which neglects spin~flip processes, the time
dependence of M({ m.\ 1) will be due to the fact that the particles move around,
carrying their spin with them. In fact it does not much matter what they carry,
i.e., what "spin up" and "spin down" meon. A system of green %= WV and red

(s = |Wv particles would behave in the same way.

. “ .
Since r0= MQ\B where vo is the momentum of the a~th particle and m

is its mass, we get from (2.2) the continuity equation

3 M0+ ¢ M n=0, @.3)
where ._.>> is the magnetization current. It can be written in the form
- -
™M= D6 Sm{pom, a7} . (2.4

We will always use curly brackets for the anticommutator

{AaB]=AB+BA .

For classical particles, the symmetrization in (2.4) is, of course, unnecessary.

Eq. (2.3) expresses the fact that the total magnetization is conserved,

d - -
4 - 2.5
- T P MY =0, @2.5)

M
but it implies an important additional property: the current j (r,t), as the

ﬂ,
§
£

2.1 Hydrodynamic Description

N
magnetization M(r,t), is a local density, dependent only on properties of particles

S
which, af time t, are in some small neighborhood around the point r. Differential
conservation laws like (2.3) will play an important role in most of the processes

which we shall discuss.

2.1 Hydrodynemic Description

The conservation law (2.3) is not a complete description; it just restricts
. - nd . -
the dynamics a little. To solve for M(r,t), we need a second equation relating
M - - s .
i toM. Now both 3+A33 and n_(r,1) tend towards an equilibrium state in

which they are spatially uniform. In other words, there is a net flow of

magnetization from regions of large M to regions of small M. Phenomenclogically,
M - - -
< (r,)>=~D V<M(r,1)> . (2.6)

This is called a constitutive equation. The transport coefficient, D, is called the
spin diffusion coefficient, ond it is positive. Note that while (2.3} is micro-
scopically exact, (2.6) can be true only on the averoge which is why we have put
brackets < > around it. These indicate here a non-equilibrium average, of course;

-+ - - -+
in thermal equilibrium, A>>T$¢Vm is independent of r,t, and <j AJ&VG

q q

vanishes.

Inserting (2.6} in (2.3) we get the familiar diffusion equation,
3,<M(7,1)>~ DVP<M(7,)>=0 , @.7)

which is now complete and can be solved. Note that this equation is only valid
if all the properties of the system vary slowly in space and time. This assumption
is clearly implicit in (2.6), and will be analyzed a little further below.

We are only interested here in an infinitely extended system. This
eliminates boundary conditions so that (2.7) is trivially solved by performing o

Fourier transformation in space,
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-+
MK, 1)>= [a7 T amT, >, (2. 8)
and a Laplace transformation in time,

d izt -
<M(kz)>= ﬂ% e <M(k,t)>. (2. 8b)
0
K is the wave vector of the fluctuation. The complex frequency z must lie in the
upper half of the complex plane for the integral in (2. 8b) to converge. From
€q. (2.7) we then obtain

- i -+
<M(kz)>= — <M(k,t=0)>, (2.9)
z +iDk

which solves the initial value problem.
The diffusion process is reflected in o pole on the negative imaginary
axis, at z = ~iDk"™. To get a little more fomiliar with diffusion poles, note that

(2.9) says the same as

-o_ﬁﬂ

- -+
<Mk, t)> =e <M(k,1=0)> . (2.10)

This equation displays the characteristic property of a "hydrodynamic" mode: it
is a spatially sinusoidal collective fluctuation which for large wavelength A= 2w /k

is exponentially domped, with a lifetime
_ 2
(k) = 1/Dk (2. 1)

which becomes infinite as k = 0.

It is well to appreciate that this behavior is very unusual in as chaotic a
many ~body system as a liquid. There is an enormous number of channels available
into which an arbitrary degree of freedom can decay after the initial excitation.
Most degrees of freedom will relax within a short time T which is determined by

the microscopic interactions. For a system of classical particles of mass m, inter~

L gy o
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2.1 Hydrodynamic Description 1

acting with a pair potential of strength ¢ and range a, dimensional arguments suggest

that T is of the order

T~ ofm/e)2, @.12)

-12

which for Helivm would give 7 =10 sec. Even though, in a quantum liquid

<
like Iww at low temperatures, the Payl principle severely restricts the number
of decay channels--dimensionally, the small thermal energy _Am._. and * become
available to correct (2, 12)--the microscopic decay times at all but the very lowest
temperatures are still very small on a macroscopic scale.
What is special about the degree of freedom described by 25“ t) is that
the magnetization is a conserved quantity. A local excess of this quantity cannot

disappear locally (which could happen rapidly) but can only relax by spreading

slowly over the entire system. A sinusoidal fluctuation as depicted in fig, 2.1

SM(x)

\\\H//u\ X

can only relax by the magnetization being physically tronsported from the excess

Fig. 2.1

to the deficiency regions over o distance of order N2, a process that requires an
infinitely long time as A + co. Indeed, if the transport process occurs via o random
walk, then ADXVM DT oor T yN\O which is what we found in (2, 11).
Returning to eq. (2.10), let us assume that initially, the magnetization

is non-zero only at’s = 0, i.e., that ;\2.«.1 =0)" ngmnw ). Then

-3/2

(M7, = M4n D)2 oo 2D | (2.13)

which displays the characteristic Gaussian spreading of a random walk process.
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2.2 Spin Correlation Function (Roughly)

The last few equations solve the problem of spin diffusion in an infinitely
extended system. Now, since this is a book about correlation functions, let us try
to extract some information about the spin correlation function. We begin by

defining the magnetization correlation function by
-+ -+ -+
S(r,t) =<M(rt) Zﬁobvvg ' (2. 14)

-
where M(r,t) is the magnetization operator employed above. The average in
(2. 14) is o thermal equilibrium average, by contrast to the average in (2. 6) which
is meant to describe a system not yet in full equilibrium. Of course, even though
-+

<M( :Jan_ =0, there will be spontaneous, usually small, fluctuations on a local

-
scale. S(r,t) describes these fluctuations. Because of the magnetic interaction of

-
neutrons with local magnetization fluctuations, the function S(r ,t) can be
measured by magnetic neutron scattering.
-+

S(r,t) presumably vanishes rapidly when r and/or t are very large since

-+ - L. -+ -
then, M(r,t) and M( 0,0) are statistically independent so that <M(r,t)M(0,0)> =

-+ ~ A
<M(r,1)><M(0,0)>= 0. Therefore, it can be Fourier transformed,
© ot m o,
Ska) = [ dt [dre’™ " s(e,n. (2.15)
-®
This function represents the spectral density of magnetization flyctuations, and is
real and positive. Because of the rotational invariance of the system, S(kw)
. -

depends only on the magnitude of k. Of use is also the one-sided (Laplace)

transform

a .
k) = [ dte'? 5,1, for Imz>0. (2.16)
0

It is an eosy exercise to show that

- <)
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J 2T -z

S(kz) = , 2.17)

which last equation has a meaning for z in both the upper and lower halves of the
complex plane. W?Nv is a complex function, analytic in z except for a branch

cot along the real axis. In fact, using the identity

Hmmwwmuixxv Q;mv

where ¢ is, here and throughout this book, positive and infinitesimal, and P
indicates the Cauchy principal value, we find that S(kw) is the discontinuity across
the branch line,
s(koy = lim [S(k, a+i€) = S(k,u=ig)J . 2.19)
e~+0

More useful is the equation which follows from the reality of S(kuw), namely

S(ko) = 2 Re S(k,a+i€) . (2. 20)

Now let us first use a hit-and-run technique to obtain the correlation
function from our hydrodynamic analysis. Why would we want to do that? First
and importantly because the correlation function is of immediate experimental
interest since it gives the intensity distribution measured by inelastic neutron
scattering. Second, because mA.q.. t) is a mathematically ond operationally well-
defined object; we know, in principle at least, how to perform thermal equilibrium
averages os in eq. (2.14). The phenomenological fluctuation AZAMLVV:O:AB of
section2. 1isa little more hazy an object since it is harder to give precise meaning
to the non-equilibrium averoge.

What we shall assume is that the constitutive equation (2.6) and therefore

the diffusion equation (2.7) are valid, in some sense, even if we omit the average
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signs <> i.e., thot they can be understood os operator equations. [f so,

non-eq’

all we have to do is to multiply eq. {2.7) (without the brackets) from the right by

M( @.\ 0) and then do an equilibrium average, to obtain

B, - D21 S(7,1) = 0. 2.21)

Our rough assumption therefore says that spontaneous equilibrium fluctuations—-
described by S--relax according to the same diffusion equation as do induced

non-equilibrium fluctuations~~described by A>>v:o:|mn. This entirely reasonable
hypothesis was first proposed by Onsager (1931), and it is quite correct.

Eq. (2.21) is solved just like (2.7) was, and the result is

S(kz) = |_m S(k, +=0) . (2.22)
z+iDk

Note, however, that the initial condition is now not arbitrary but is perfectly well

defined by eq. (2.14). In fact, in section 2.4 we will show that S(k-0Q, t- 0) is

rm4 times the spin magnetic susceptibility X,

lim S(k,+=0) =B (2.23)
k-0

ond therefore, for small k,

~ H -1
S(kz) =2 L (2. 24)
z+iDk

To extract the spectral density, we cannot use (2. 19) since (2.24) holds, by

derivation, only for Imz >0. However, we can use (2.20) and obtain the final

result

Dk2

2
Ske) = 2y (2.25)
2+ k)2 B

whose experimental significance we shall discuss below.

g
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Of course, eq. (2.25) is an approximation to the real world. It is valid
only for small k and v which means, in the loose language that is common, it is

1

valid when k_ is much larger than all "natural lengths in the system, " and when

EL is much larger than all "notural times in the system". The important length is

the mean free path, which in a liquid is of the order of the interparticle distance.

Note that the behavior of the correlation function at small k and w is by

no means simple. For example, lim [lim S(k) 1= 0 but lim [ lim S(ks) J-c0. The
w0 k=0 k-0 w-0

order of the limits matters, and one must be extremely careful if he wants to make

expansions of correlation functions in terms of k and w. However, the inverse of

the complex function w«?wv.

k) = e 07 Eriok?, 2.26)

looks smaoth, like the beginning of a Taylor series in k and z. We shall see that
~1

the rational thing to do is usually to make approximations for S rather than 5.

Equation (2.23) is equivalent to

da:
lim B [5= S(ka) = x - (2.27)
ka0 27

This is called a thermodynamic sum rule since it gives o thermodynamic derivative,
X = {(dM/dH) which is the spin magnetic susceptibility, from a frequency integral
over the correlation function. This sum rule is exact and our hydrodynamic
approximation (2.25) exhaousts it

Furthermore, from (2.25) we see that

2
B i [lim & s(ke) 1= Dx 2.28)
2 20 k0 k2 '

which gives the spin diffusion coefficient D in terms of the correlation function.

This is a Kubo relation though it doesn't quite look like Kubo's original expression



16 . Spin Diffusion

(Kubo 1957). However, it is a simple and useful exercise 10 manipulate €q.

(2.28) into the form

[e o]
Dy - (/25 fd7 [ My Mo, 2. 29a)
(o ]

where use is made of translational and rotational invariance. Or finally, defining

the tota! magnetization current operator by

|.|.¢7>8

My = Tar TGN

we get what Kubo got,
- 1M, M -et
by = lim 13V [ dt < {170, J @) >, (2.29b)
B 2
¢+0 0
where V is the volume of the system, ond we have put in a convergence factor

ct . .
e =, to be safe just in case convergence at large t should be subtle.

2.3 Magnetic Neutron Scattering

So far, we have been doing pretty well. Using simple arguments we have
obtained an experimentally relevant correlation function. S(kw) can, as we said,
be measured by neutron scattering. Neutrons possess G magnetic moment which
iateracts with the magnetization of the medium by the magnetic dipole interaction,
and leads to scattering. What one does is shoot into the liquid neutrons which have
« ag I .
initial energy €, and momentum p.. One then looks for scattered neutrons with

- 4 .
energy € =€, " hw and momentum pe = P, ~ nk. Obviously, the neutrons have lost
1
{or picked up, depending on the sign of w) energy and momentum to (from)
excitations in the system, namely the collective fluctuations of the magnetization;

see fig. 2.2.
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S(kw) [k fixed]

fie P DK’
~8/ <)
€, P ho, fik

Fig. 2.2 Fig. 2.3

The spectrum of these fluctuations will therefore determine the inelastic scattering
cross section. This is shown in the Appendix. For the moment, it will suffice to
note that the intensity of the scattered beam, _unﬂ:t is given by
-+ -+ -+
P, P T Bk
| = T foctors times umggﬁme ). (2.30)

scoft

e.* €. - hw
i i

Eq. {2.25) tells us to expect @ Lorentzian line shape for this process, see fig. 2.3.
The width of the Lorentzian, at half maximum, is given by Orm. Thus, one can
measure the spin diffusion coefficient since the {foctors ] do not involve the
frequency shift w. The total area under the Lorentzion, .r.me S(kw), is given by
2% rqu\ and one could also measure the spin susceptibility if the [factors ) were
accurately known. Unfortunately, absolute intensity measurements are difficult,
and the [factors ] involve , moreover, magnetic form factors which are often not
well known. We also note, finally, that eq. (2.25) holds only for small k and ®
which is a region difficult to resolve by neutron scattering. Nevertheless, we

meant here to demonstrate the principle of measuring correlation functions by

scattering and for this purpose, out example will suffice.
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TR

2.4 The Static Susceptibility i where H is the full many-body Hamiltonian of the isolated system. Therefore, the
————— ¢ Jusceptibility g

In this section, eq. (2.23) will e demonstrated, to make good on at 4 average magnetization is

tot
least one promise made above, The proof is simple, What we have to show is : ~BXtot BH-M""h] tot
AZVT nhAiﬁo*v:n!d tre M e M 2.36)
\% \% t m:mu.m \

tot
that t mrm H-M""h 7]

ml_x H:B %m._w mlm _m. H.-AZA.«.V Zaovvﬁ._ ] @.31) in a canonical ensemble. Toke the derivative with respect to h (this can be done
k=0

. tot | .
painlessly since the Operator, M, s conserved, and thys commutes with H) and

No time argument is needed here; both operators ?R& and M(0) cre taken at t = 0, then set h = 0. We get

f.e., in Schrddinger representation. We con, instead of the dipole moment per

unit volyme ZAU\ introduce the totql dipole moment operator by W%v’r _ruo =(BA) mm% - %Nu
M= fa? M) = mv 2.32) “ or

s0 that we get, using translational invariance, : % ua\S/\Ea,Azafgxzaﬁﬁ,ga,vgvvﬁ . (2.37)
X = (B/V) <m'®f pmfot, 2.33) ,.ﬂ Of course, <M*'>= 0 in the absence of the field h 5o that we have derived

- (2.2 th ivalent eq. (2.27).
Now what do we mean by "magnetic susceptibility X"? Phenomenc- °- (2.23) or the cquivalent eq. (2.27)

. . N . We have written X in the form (2.37) to indicate clearly that the
logically, we mean that if we measure the average mognetization (per ynit volume)

, tibility is given by th fluctuati ft tization from it
A..SVT in the presence of g constant magnetic field h, we find AivT = Xh if the ! susceptibility is given Y The Huctuations of the magnetization from its

. equilibriym value; static fluctuations, nota bene. This connection should not be
external field h s sufficiently small, (We use h here rather than the customary H a !

too surprising. measures how easy it is to change the average magnetization by

! to avoid confusion with the Hamiltonian.) More precisely, x is experimentally

m defined by the equation means of an externgl magnetic field. Clearly, this shoyld be the easier the larger,

or more probable, are spontaneous fluctuations of the magnetization from its

_ wAivT

i = o .

e g e

(2.34)

average valye. Similarly, we will see later that the response of the particle

density to an increase of the pressure, i.e., the compressibility, is given by the

the derivative to be taken at constant volume and temperature.  So we have to

. .. L. . Spontaneoys fluctuations of the total particle number. And the speci ic heat
compute this derivative from statistical mechanics. Now in the presence of o P pa _u .

r describing the change of the energy with changing temperature, is given by the

: fluctuations of the energy Operator, i.e., by AIM- AIVNV. And so on,

magnetic field h, the totql Hamiltonian s given by

KH~ [d7 M(Dh = H-pmh, , (2.35)
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Sometimes things are not quite os simple as we have made them. We have

calculated the limit lim S(k,t=0) by simply setting it equal to §(k=0, t=0). Some-
k=0
times this is not allowed. For example, for the particle density correlation
?3010: at t =0, mzs?v\ the value m::? =0) depends on whether a canonical or
grand canonical ensemble is used but the limit lim S_ (k) does not. Things also
k=0 "™

hove to be reconsidered when the forces between particles are of long range. For
dipole—dipole forces, the measured susceptibility depends on the shape of the
sample, for instance. And finally, even if there are only short-ranged forces,
there might be long-ranged correlations in some cases which makes the limit as
k=0 subtle. We will worry about that when we get to it. In Imw where we can

neglect dipole-dipole forces, and there is no long range order, there are no

problems.

2.5 Linear Dynamical Response

What we have just calculated can be called the linear thermodynamic or
static response to a constant magnetic field. We will now analyze how the
system responds dynomically to an external magnetic field _urmx:ﬂ. t) which
varies in space and time in some prescribed fashion. Our reason for doing so is,
of course, that this is the way most experiments are perfarmed: You apply an
external force of some sort to the system, look what happens, and infer from that
the properties of the system itself. Some experiments do not fit this Procrustean
bed, of course, but many do; you can't win them all. In particular, in discussing
spin diffusion in section 2.1 we assumed that,at t =0, the system started out from
some non-equilibrium state so that Asﬁx.‘.‘&v # 0 initially. Such a non-
equilibrium state can be produced, in the laboratory or on paper, by slowly

turning on a magnetic field sometime in the distant past, and following the

development of the system until t = 0 when a A,Zx.q.\ovvx 0 will have resulted. If

B et
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we then switch off the field, the further time dependence of /\wa\&v:oslmn

should coincide with our simple spin diffusion theory if that theory is correct.
ext =+

Now in an external magnetic field 8h™ (r,t) the Hamiltonian is

explicitly time-dependent, and given by

K = H+ i = H - [d7 M 870 (2.38)

-
in Schréédinger representation where the operator M(r) is time-independent. The
time dependence is carried by the density matrix, or ensemble operator, dt)
-+
which describes the state of the system such that the average of M(r}, or any

other operator, at time t is given by

<M(T B> =t o(f) M(D) , with tr ) = 1, (2.39)

where tr is the quantum-mechanical trace.

What follows is entirely parallel to the traditional derivation of the
Heisenberg-Kramers formula for the dielectric constant given in elementary
quantum mechanics texts. We have to solve the Schrdinger equation for the

density matrix,

ina o(t) = 3, ()= [H, 0() T4 G OO (2. 400)
subject to the initial condition
p(t = ~o) = co. with H, ¢ (2. 40b)

The initial condition expresses the fact that the system is stationary before

ext

&h is turned on; we require, of course, that ormxn + 0 sufficiently rapidly as

0

t » -0. For the manipulations, it does not matter what p is in detail but it is

presumed known. Since the system usually starts out from themmal equilibrium, an

ovﬁqovlo»@nromnmmoq no will be a canonical ensemble bo = m:DI\:‘ m..mI~ with
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N fixed, or a grand canonical ensemble p %mlmAI|th~ or some other stationary

state.

. . . ext ;
Now all we want is the linear (in &h x ) response. But to first order,

(2.40) is easily "solved". Namely, At) = uo + &p(t) with

-

[ dr m-m:¢-¢\3 EAT,;\:.

531y, 0 Je @2.41)

&p(t) Hﬂ_l

From here, a few simple manipulations will convince you that the induced change
. L. - -+ [

in the average magnetization, 8< M(r,t)>= tr p(t) M(r) - tr p"M(r), can be
written in the form

t

BM(T > = [ dt' [dr <z MG, z,?;:/ (@, 1 (2. 42)
-®
where [A,B] = AB-BA is the commutator,and <>  indicates an equilibrium
eq
average, <A> = tr no>. Henceforth, we will drop the subscript "eq". In

eq
(2.42), ZAva are the Heisenberg operators for the unperturbed system,

M) = TPy &R 2. 420)

£q. (2.42) is the fundamental result of linear response theory. It
shows that the response function is the averaged commutator, rather than the
correlation function maw.c as one might have expected. Small matter; the two
functions furn out to be essentially equivalent.

it is customary to define the response function by

Xy (7T = uylE? 0, MG . (2.43)

Since a liquid in equilibrium is translationally invariant in space and time,
-
xaA t, a +y=x" T 4q ,t-t ), and we can define a Fourier transform by

49 9,

X7t ) = H % it ) k() Ry 2,49
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Here ond henceforth, all frequency integrals extend over the whole real axis:

%m& = .—. dw. It is easy to show thet X A_Gv is real, an odd function of ',

™ LY -
and that it only depends on k = lkl, since X” is @ commutator of hemmitian

operators, and the equilibrium st ate is invariant under time reversal, parity, and
is spatially isotropic. We will also show that wx"(km) > 0 in a stable system.

A useful function is the complex response function Xx(kz), defined by

x(kz) = [42 Wlken) (2.45)

ez

This is an analytic function of the complex frequency variable z as long as Imz 7 0.
On the real axis it has a branch cut. Of course, if z is in the upper half plane,
w(kz)} is identical with the Laplace transform
@ .
x(kz) = 2i @ﬁ dte'Z x'(k,1),  forimz>0. (2. 460)
On the other hand, if z is in the lower half plane, X (kz) is determined from
negative times,
0

x(kz) = (-2i) [ dte'® x(k,1), for Imz < 0 . (2. 46b)

-0

The physical response is given by the limit of x(kz) as we approach the real

frequency axis from above (from the "physical sheet"):
(k) = lim x(k,w+ie) = x (kw) + i x"(kn), (2.47)
e=0

where

X'(kw) =P [ 27 (2. 470)

dw’  X'(kw")
LAY
P indicates the Cauchy principal value, and w is real.
To demonstrate this statement, and make physical sense out of these
definitions, let us go back to eq. (2.42). The response is a convolution in space

. t
ond time. We decompose %" and similarly <M> in Fourier amplitudes,
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d die ekt -
T [ [ S5 itk T gext £y, (2. 48)
(27

and we obtain

bem> (k) = X(ke) 8h(Ku) - (2.49)

y(kw) is therefore the complex dynamical magnetic susceptibility as it is usually
defined in electromagnetism. lts imaginary part, X (kw), must describe
absorption, its real part, ¥ ‘(kw), dispersion just as the standard texts show. Eq.
{2.47a), which connects the two, is a Kramers-Kronig relation, expressing
causality which is implicit in (2.42). And our as yet unproven positivity
statement, wX (kw) > 0, expresses the fact that a dissipative many-body system

takes more energy out of the external field than it gives bock.

2.6 Hydrodynamics and Correlation Function

We are now in a position to give better than hit-and=run arguments for
what we attempted to do in section 2.2--to establish the connection between the
hydrodynamic diffusion equation and correlation functions. We approach the
matter as we would in the laboratory. First a spatially varying magnetic field
o_iwv is slowly, adiabatically, turned on, to mechanically produce a state with
non-zero magnetization. At t =0, the field is switched off, and we can follow
the relaxation of the induced magnetization as the system returns to equilibrium.
into the general relation (2.42) between force and response, we insert the
external field

mrﬁwv &t fort <0
w7 ) = . (2.50)
0 fort >0

At t =0, this force has induced the magnetization

T

t
H
H

i
+

2.6 Hydrodynamics and Correlation Function
@
&\ . ,; ...lo\>:|c|o~ -7 -+
EM(r,t=0) = 2i [ d7 ] dr (r-r’, ") e &h(r ", (2.51a)
0
- -
or s<M( k,t=0)>= x(k) Sh(k) (2.51b)
by spatial Fourier transformation, where
. n d "
(k) = lim xk,2) | = [ X k) e (2.52)
mtvo Z=1E
For positive times t >0, (2.42) ond (2.50) give
-+ ¢ I rdindl €Ty s
S<M(r,1)>=2i [ d7 [dr'x'(r=r't-m)e” thir ), (2.53a)
-
whose Laplace transform, defined os in (2.8b), is
o dw X(k) -
=
b<M(kz)> = [—= =] &h{ k). (2.53b)
And if we use (2.51b) to eliminate the external field, we obtain
- -
beM(R2)> = (1/iz)xkz) X ()-1] 6<M(K, 1= 0)> < (2.54)

We have inserted the response function (2.45) in an obvious way .

The fundamental result (2.54) is an exact expression. It is, moreover,
of the same genera!l form as the hydrodynamic result (2.9), ond it describes the
same process. Therefore, for small k and z where hydrodynamics is correct, we
can compare {2.54) ond (2.9), and obtain

2

idk 7 (k) {2.550)

z+iDk

x(kz) =

and in particular, by setting z = w+ie and taking the imaginary part,

X' (k) nnlnqﬂomé x(k)
EM + (Dk") )

(2.55b)
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What we have obtained is the correct limiting expression for the
magnetic response function. If everything is consistent, X(k) must be the static
susceptibility at small k since then, (2.51b) states that [x = x(k=0)] OAZA_.MVV =
X Sh( _m.v or oA>>A.q.VV = xozwv which is how the susceptibility is defined. From

(2.52) we can therefore write the thermodynomic sum rule as

M . dw .,
X= 5p— _ruo = lim [ dh X (kw) /. (2.56)
k-0
And from (2.55b) we find
Dx= lim [lim uw X(kw) ], (2.57)
w0 k=40 k

which is, again, a Kubo-type relation for the transport coefficient.

Don't miss the point of these results: x"(kw) is, by egs. Hw.ww\ 44), a
mathematically well-defined object. It may not be easy to calculate from a
microscopic theory but at least one knows exactly what one should, in principle
and in approximation, calculate. And indeed, there are several powerful
techniques ovailable for such a calculation. Eqs. {(2.56, 57) show how from
X"(kx) to obtain the macroscopic parameters X and D. Undoubtedly, these
expressions are now on a much firmer basis than what we have, haphazardly,
derived in section 2.2. We shall now show that the respective results are

completely equivalent.

2.7 The Fluctuation-Dissipation Theorem

In order to see whether or not we have goofed in section 2.2, i.e.,
whether or not (2.57) and (2.28) are consistent, for example, we have to establish
a connection between the functions S(kw) and X“(kw). This connection is given by
the celebrated fluctuation-dissipation theorem, discovered by H. Nyquist in 1928

as a relation between noise and dissipation in electric resistors. For our case, this

o
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theorem {Callen and Welton 1951) states that

-hy

(k) = (1/20)(1-e By sy (2.58)

Accepting the theorem for the moment, we see that the Kubo
expressions (2.57) and (2.28) are indeed equivalent. With the thermodynamic
sum rules (2.56) and (2.27), things are just a little more subtle. [If we use (2.58)
in (2.56) we get

?
. dy 1 -hw : . d:
lim [ 92 (1" Pys(ier) = x= lim B g2 Stko) . (2.59)

k-0 k-0
After our derivations in sections 2.4-6, we cannot very well doubt either
(2.27) or (2.56). Now notice that if it were true that lim S(kw) ~&(1) we

k-0
would be all set since E:REV HOmo_‘:vO‘o:Q}mqmﬁo_.m Ad\nsvﬂlmnmv.b

Y&(r) =

B&(w) so that the two sides in (2.59) would indeed be identical. Now is

Sk=0,w)~8uw)? Well,

S(k=0,1) = [ d7 <M(7, M0, 0)>=<M"'(t) M(0,0)> (2. 60)

. . tot . . .
as in section 2.4. But M~ (t), the total dipole moment, is conserved, vide

eq. (2.5). Therefore, S(k=0,1) is in fact independent of time, and its Fourier
transform
@ .
S(k=0,w) = const [ die'™" = const 2m 8(a) . (@2.61)
-
So indeed, the ? in (2.59) is unnecessary, and the two expressions (2.56) and
(2.27) for the susceptibility are completely equivalent. We might note,
parenthetically, that if >>3~ were not conserved we would have to revisit section
2.4 in foct since we assumed there that Ts»o*\Iu =0. No such assumption was

implicit in the derivation of (2.56), and in this case, (2.56) is the correct

equation as one can also show from (2.36) and (2.58).




L Spin Diffusion

- - - " . - - . -
Since our derivation of ¥” in section 2.6 is much more convincing than

that of S in section 2.2, let us use the former to correct the latter. Instead of
(2.25), we should have

e %
Tm'w:.cm EM+AU_ANV

S(kw) = (2.62)

2
7 g*-
Thus S(kw) is not quite symmetric in w. At positive frequency w> Oitisa
little stronger than at negative frequency w <0. Indeed, since w ¥(kw) s

always even in w, it is generally true that

sk, -0) =e P sqk, @) 2.63)

This result makes eminent sense in the light of what we said above about neutron
scattering. According to (2.30), € =6 hw. Positive frequency means the
neutron has lost energy to the system (by creating an excitation of energy fuw)
while negative frequency describes a process in which the neutron has picked up
energy from the system (by destroying an excitation). Of course, to destroy an
excitation you must first have one, and their relative abundance is given by
m..w::m. "Die Nirnberger htingen keinen, sie hdtten ihn denn." (Schinderhannes)
The dissymmetry of the scattering intensity, ~S(kw), is only pronounced
at low temperatures, rmq < hw. It is absent classically. 1t is an important
effect in Raman spectra in solids which probe optical phonons of relatively large
energy. For hydrodynamic modes, the frequency is so small that the prefactor in
Bq. (2.62) is, effectively, unity.

And now we had better prove (2.58). Since we will use this theorem
often, and since its proof is simple, let us consider correlations between the

arbitrary observables >m3 and \JA&. defining

7 e e

i
H
§
¥
¢
!
:

St
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M:E = A>m3>m§v - <A< >mA8v\ ,

“_ O] Am_ﬂ Fs\{sv ;

We have subtracted the equilibrium averages in (2. 64a) so that m:ﬁv -+

i

t -+ oo, and thus its Fourier transform mm,AEV presumably exists. Of course}
|

<A ()> is independent of time.
i

Let us perform the average over a canonical ensemble numlmI X

-BH . . .
Because the operator, e P , effects a time translation by the imaginary §

T=1ihp, see (2.42a),

te %??3)@ = tr A(t+i7P) m-mf_@

<ty m-mzjﬁo}:iw@ ,

where we have used the cyclic invariance of the trace, tr AB = tr BA. N

of time translation invariance, Abmﬁvxr.ﬁovv, <A.(O)A.(-1)>, we }m_‘mm.,,.
I ! | ,

-iphid

m:?c = m:e| ihB) = e t m:3 .

And thus easily from (2.64)

2h x\mwev S mz31 m:Tc = N-e

whose Fourier transform, w,, =+ -iw, is 3

20 = (e 50

This is essentially eq. (2.58). We only have to recognize that .N the ord

-
of M(r), is an operator label like i above. For the magnetization corret

functions we get therefore the equation
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~ 2 xbzﬁ-wosv - (1-e TR wzzﬂu-uosv , (2.68)

whose spatial Fourier transform, eq. (2.58), we set out to prove. We will have

more comments about this theorem in the next chapter.

2.8 Positivity of wx(kw)

We pointed out after eq. (2.44) that
wxX'(kw) > 0 forallkandw . (2.69%)

The significance of this property is already clear from the foregoing. From (2.56)
we see that it implies that the spin magnetic susceptibility X is positive which is
a necessary condition for the thermodynamic stability of the system. From (2.57)
we see that it also implies that the spin diffusion coefficient D is positive which
is necessary for the system to be dynamically stable, see eq. (2.10). And finally,
since (2.69) is tantamount, because of the fluctuation dissipation theorem, to the
assertion that Stkw) > 0, it is necessary for the interpretation of the function
S(kw) as a spectral density of fluctuations.

(2.69) is quickly proved. We take again an arbitrary set m >m¢: of

observables, and consider m:ﬁ.» ‘) in the form
5,111 = <A - ANAL )= <A1 )2)> - (2.70)

Multiplying with any set of functions oms and integrating over some large time T,

we obtain
RIS .
Zen  { d ,&.aus mz?s omc\TQﬁv >0, (2.71)
i T -7

where
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T
a=zen? T - <A 0> To) .

i -T

(2.71a)

If we choose, in particular, o_.s =a, e " and remember that meL ) nm_.mQL ,

then in the limit of lorge T we find

<A*A>= Za*S (x)a >0 (2.724q)
i ! 1 |
which is equivalent, because of (2.67b), to
2 o_.* Exm\_.?_v .um >0. (2.72b)

—\_

Again, the operator label i will, in cases considered here, include the continuous
-+
- . -+ . - ik-
variable r, and Z is replaced by .?_. . The choice T, sa(r) =€ " and
i

translational invariance in space yields

mZZArc,VW 0 or Ex>>>>A_AEvIV 0 . (2.73)

This demonstration is, of course, a bit relaxed. It can be fancied up
considerably, but too much mathematical rigor may not be in place when one
. 23 . - . . .
deals with 10°" particles. A more physical dynamical proof,which elucidates

the fundamental connection between (2.73) and the dissipative property of many-

particle systems, is given in section 3.3.

2.9 Sum Rules

From (2.43) one sees that
LN A, 1 .o, 2 o
(3" X T = g R MO, MEU. @78
Taken ot equal times t =t ’, this means that
+ 4, —ik(r-T)_1

20 " () = (P77 e 1 G MOE 0, MED B, (2.79)
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where

" M3 c%t; M(7,1) u@: L. M0, HL.. HT . (2.75q)

1]

Thus the right hand side of (2. 75) contains a sequence of equal time commutators
which can in principle, and in some cases in fact, be exactly calculated. The
simplest of these is the sum rule for n =1. (Clearly, since ¥“(ka) is an odd function

of w all sum rules for even n vanish.) Namely,

KT ) <5 B MY, MG D) (2.76)

because of the conservation law (2.3). At equal times, the commutator is easily
evaluated. From the explicit expressions for the magnetization operator and its
current, Egs. (2.2,4),0ne finds

M, - 2 - - -
G, M(r )= Tﬂ in e [n(r) 8(r-r "], (2.77)

which is "a very disguised version of the fundamental statement that the commuta-
- -+
tor of the position and the momentum is ih". n(r) =2 § s ) is the particle
a
density (operator). Thus we find the sum rule
2,2

T2 (k) um W2 (2.78)

™

is the spin analog of the famous f-sum rule. By contrast to the thermodynamic
sum rule which we found earlier, eq. (2.56), and which holds only as k =+ 0,
(2.78) is exact for all k. Further sum rules can be derived, but with ropidly
increasing labor. .

The sum rules provide the coefficients for an expansion of x(kz) for
large z. From its definition in (2.45), we see that for large z
©

x(kz) = -2

n=1

AE?VAEV

zn

x(k} , {2.7%q)

where

2.10 Relaxation Time Approximation

[k /s

iy

My =

From its derivation which expands ::.h\Nu; =1+ (n/z) + AE\NVM +

clear that this expansion can only be asymptotic. It is valid when |z 1]

compared to all frequencies in the system" which means, all frequencig

which x"(kw) is not effectively zero.

We can also relate the sum rules to a Taylor expansion in tig

should be apparent from (2.74,75). (2.79) is equivalent to

(o0} .
Vi =) % L

n=0 n!

Dy

Nl

which makes it clear that the high-frequency expansion is equivalent

s

time expansion.

2.10 Relaxation Time Approximation

An interesting feature of the sum rules is their very existenc
no reason why the thermodynamic average of the multiple commutators M
should not exist, for alt n, and in many cases this can in fact be rigor
This meons, then, that x“(kw) has to fall off sufficiently rapidly at la
all of its moments are finite.

Evidently, the hydrodynamic approximation for X' (kw), eq.
does not have this property. Indeed, while it exhausts the :}03‘_0&%:‘,.,.
rule (2.56), it fails to satisfy even the first high-frequency sum rule (2.,
Lorentzian dies off too slowly in the wings. )

This situation can be remedied in a simple fashion. Since, ,..

explicit expression (2.55b) for X" is not much more than a fancy way of 4

diffusion equation, fet us now try to improve the theory by improving
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phenomenological equation which it represents.

The constitutive equation
M@ )= -D% (M(T 1) 2.6)

from which we started, implies that the current follows changes in the magnetiza-
tion instantaneously. This is true when (M) varies extremely slowly in time, i.e.,
for small frequencies. However, when A>>Awlvv varies more rapidly, i.e., for
larger frequencies, the current cannot keep up, and there must be a time lag

between M and .m;s. Instead of (2.6), let us therefore try

t
AME N> =-Jdt D=t ) FIM(T A7) . (2.81)
0

This equation incorporates causality: the current must follow the magnetization
fluctuation which causes it. We have fixed the lower limit at t =0 since for
negative times, when the initial disturbance is adiabatically created, the current
surely vanishes. Indeed, it is a good exercise to prove that the f-sum rule can-
not be satisfied as long as :Zv #0 ot t =0, That is what is wrong with eq.
(2.6).

The function D(t-t ‘), appropriately called a memory function, incor-
porates all the complicated rapid processes which are set in motion by the initial
disturbance. Let us assume, for simplicity, that all these processes can be

described by a single relaxation time 7, i.e., that

D{t-+') = (B/7) stV (2.82)

Putting it all into the continuity equation (2.3), we solve as before:

(M(Kz)) =—— (MR, 1=0)) . (2.83a)
z+ik" D/(1-izT)

And just as before, we obtain from this the response function

2.10 Relaxation Time Approximation
_._Aw_u\:-m z7)
x(kz) =——m————— X (2. 83b)
z+ik"D/(1-iz7)
and its absorptive part
2
“ k"D
¥ (kw) = 5 s X - (2.83¢)

W + OMA—AM - EM,_.\UVM

Note that with D(t-t ') given by (2.82), the current can be obtained from
M 2 - -
?w*+ 1 G ()= -D v{M(r,t)) , (2. 84aq)
so that eqs. (2.83) are equivalent to the phenomenological equation of motion
2
(3" + :\iﬁ - o%:AEu.cv =0. (2. 84b)

The last few equations are the direct analog of the description employed by Drude
and Maxwell for the dielectric response.

What have we gained? For small frequencies, AS\Urwu:.q << 1,
(2.83c) is our old Lorentzian of the hydrodynamic theory. However, x"(kw) now

falls off faster in the wings, and sufficiently fast that the first moment is finite:
2 -1 ¢ .
(ol VEVH X .14& w X'(kw) = o/ (2.85)

Eqs. (2.83) will therefore give an interpolation formula which is correct at both
long and short times, or small and large frequencies. To this end, we require
that the exact f-sum rule (2.78) be fulfilled, and we obtain an expression for the

spin diffusion coefficient, nomely
. (2.86)

Thus we have done our first sum rule calculation. (For similar ideas,

see de Gennes 1959, Mori and Kawasaki 1962, Bennett and Martin 1965.) As a

35
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coleulation of D, it seems barely worth the effort at first since it just replaces one

parameter, D, by another, 7. However, T is much more closely related to the

microscopic dynamics. [t is clearly of the nature of a microscopic collision time,

and its numerical value can be estimated from atomic collision cross sections in @

gas, for example, or even more crudely,in a classical liquid, assessed to be roughly

given by A of eq. (2.11). Semiquantitatively, (2.86) is a very usefu! result.

3

In He® which is a degenerate Fermi liquid ot low temperatures, scatter-

ing is sharply reduced because of the Pauli principle, and T~ _\AM. The spin

y reduces to the well-known Pauli susceptibility, ond is independent

2

susceptibilit

of temperature. We therefore expect from eq. (2.86) that D ~T7 % ot low

temperatures (Martin 1968), and this is experimentally verified.
Eq. (2.86) also makes an interesting prediction about the behaviar of

the diffusion constant near a critical point, say in @ Heisenberg paramagnet to

which our considerations apply with no essential chonge. As the ferromagnetic

transition is approached, the spin susceptibility X(T) increases without bound while

there is no reason to expect that the microscopic decay time T is much affected.

We therefore expect that the diffusion constant goes to zero. This critical slowing
down (see eq. (2.10)) is a general phenomenon.
with a tremendous increas

to strong scattering.

for the entirely analogous phenomenon of critical opalescence (for critical

phenomena, see Stanley 1971).
While the result for X"(kw) is somewhat improved from eqs. (2.55) to

(2.83), all higher frequency moments A;.?VACV ,n> 4, still diverge. This can

now be easily remedied. Remember that the relaxation time ansatz (2.82) was

quite ad hoc. For arbitrary memory D(t), we would obtain

it is coupled,as eq. (2.83c) shows,
e in the amplitude of spontaneous fluctuations which leads

Near the liquid-gos transition in normal fluids, this accounts

-

2

.10 Reloxation Time Approximation

2
ik D
w(kz) - — NE X,
z+ik D(2)
which makes it plain that what the “constitutive equation with 3030._.“
4

does is introduce frequency dependence into the transport coefficient,
A

i

P izt dv D .
D) = [e D = () (imz >0) i
o 2™ -z ’ {
p
. j
/ S :
where D(t) and D () = M_ dt e D(t) con always be chosen as real§
- b
functions of their argument. Also a
2 .
(k) = 5 wk“D (w)/2
) o dw D (v) 2, 2 )
e2p [ 20 2P o 2

The function D ‘() must therefore be positive.
From (2. 87¢) or more eosily from (2.87a) it is easy to see!
n moments of ¥ (k) will be finite if we choose a D ‘() whose first i

finite. In particular, the f-sum rule is fulfilled if 4

1 oedw Ay
X —[MP o X (k) wrw ,TQIH_ D' (w)
or
DG =0) - (3 b o
g D) T

All this sum rule does, therefore, is to prescribe the value of the me
D(t) ot t = 0. This may be a helpful reminder for the occasional reat
be overly impressed by these general results. The complexity of am
problem does not disappeor quite so easily. Since it leads to finite !

order, one often prefers a Gaussian memory

n 2 _ 2 2 2
D(1) um_hﬂ . n(t/27" D ‘() uw_ﬂﬁ 7 (w7) /m
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but many other functions are equally good candidates. (The Gaussian has also
some appeal for stochastic reasons. )

For hydrodynamically long times, one probes only the integrated effect
of the rapid processes contained in D(t). For any D(t), the hydrodynamic diffusion

coefficient is given by

D =lim D(z) = [dt D(t) =
0

z=0

! lim D“(w) (2.90)

w-0

Nl

which follows, for example, from (2. 87c) and the Kubo relation (2.57). This also
gives a more precise meaning to the relaxation time of eq. (2.86). 1 is the

average "memory time",

= [1/D(t =0)] [ dt D(t) . (2.91)
0

There is one simple fact about the time dependence of D(t) which we

know for certain, namely that

o | < biE=0), (2.92)

- - . ! - .
which is a simple consequence of D ’(w) >0. Loss of memory as time passes, is a

general phenomenon in nature.

2. 11 Dispersion Relation Representation

We have said almost everything that can be said without doing more
detailed microscopic calculations. However, the linear constitutive relation
(2.81) can be generalized a little further. We have first relaxed (2. 6) to allow
for memory effects. If we in addition allow for a spatially non-local connection
between current and magnetization (or gradient of the latter, rather; a spatially

constant magnetization will evidently not give rise to a current) we obtain

2.11 Dispersion Relation Representation 39

3

t
M - F2Rd ’ ’ ’
G ?3”-@; JATD(T ) S )y (2.93)

This leads to
2
ik D(k
x(kz) = — NA 2w, (2.94)
z+ik” D{kz)
where
T 4 irt-iRT
D'tkw)= [ dtfar e "' T h, (2.95q)
=0

de D (ks
Dikz) = [~ sA.N: . (2.95b)

D \QMSV can again be chosen real, even in w, and a function of :.A.“ only. lts
Hilbert transform, D(kz), is closely related to what, in field theory, would be
called the self-energy. From (2.94), X" (kw) is given by
2,
X" (k) = 1k” D (kw)/2

dr  D'tkw) 2 2 7 @59
Uulhwu + (k™D “(ka)/2]

[ rmev i
We will now show that these formulae, which replace the hydrodynamic
transport coefficient by a k- and z-dependent object, are in fact completely

general. Of course, since (2.94) simply defines the function D(kz) in terms of

X(kz) by

. -1 2
kg = 1Z _x(k) - - ¥ (kz)/k
P =7 U -5tay ! e @ T - n.ﬁ

the only thing that has to be proved is that this expression is indeed an analytic
function of z, for Imz £ 0, as implied by the representation (2.95b). Now we
know that x(kz) is analytic everywhere, except on the real oxis, of course. All

that could go wrong, therefore, is that the denominator,

- 2o
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W [x(k2) - x( 1= ;ml__t %Mr.wv u.o\ Q..omv

would vanish for some z off the real axis. However, for z = x + iy

dw  Y(kw) _ pdw y ¥ (ka) )
Re o w(w-z .%ll - £0 ify 70 (2.99)

i b AEJ&N + v\w w

cannot vanish anywhere (y #0) since ¥kw)/w s non-negative,, and thus (2.98)
cannot vanish for Imz # 0. Hence, D(kz) os defined by (2.94, 97) is analytic,
ond (2.95b) is a proper representation.

There is a point to being suspicious of exact results of complete
generality when they pertain to @ complicated mony-body system. If they are
so general, how can they be practically useful? What we have proved is an
exact dispersion relation (2.9¢) for x/(ks). That is not awfully much since it
just introduces another unknown function D ‘(kw) to describe X' (kr). And indeed,
many different kinds of dispersion relafions can easily be proved (Kodanoff and
Martin 1963). What makes the present one nonetheless valuable is that in the
important region of small k and w where X (k) hos @ complicated analytic
structure, D/ (k) is presumably well-behaved, with its value at k = 0 ond m=0
given by

1p'0,0 =D, (2.100)

|

the spin diffusion coefficient. Thus, for small k and w, D “(kw) is a simpler
object than ¥’ (kw), and approximations to D “(kx) have o better chance of success.
All of our previous results, such as (2.55b) or Aw.mwo?._dvqmmm:., such approxi-

mations.

It is instructive to recover the hydrodynamic result (2.55) from the

2. 11 Dispersion Relation Representation

mm:m_‘o_ representation (2.94). This equation, or equivalently

I d L,
B [x(kz) - x(K)]=C (kz) = " y
m 2+ k2D(k2) X,

does incorporate one important feature of the dynamics: the col

at z = 0. As k becomes finite, the pole migrates into the lower §

0
a point z =2 (k) which is the solution of

Lok, =0.

Note that in (2.102) D(kz) is not the function (2. 95b) for Imz ¥
that function, analytically continved from the upper half z-pla
branch cut on the real axis, onto @ <econd Riemann sheet. For:
solution NO?V of (2.102), we can expand the slowly varying fur

obtain to first order

z+ ;woﬁ_& = AN-NOEV N-_E ,

where
-1 2 30(ka)
Z (k)= 1+ik o . L
dz
0
Near z (k) therefore
Z(k) -1
Clkn) = —2L ip7 v
z-z (k)

The constant Z(k) is the pole strength, akin to the wave functiol

constant in field theory. And to order rw\

20 = k2D(0,0) and Z(k) =1,

which is the hydrodynamic result, ond gives precise meaning 0

result, eq. (2.55),is a rigorous asymptotic expression for the
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2 Spin Diffusion

Let us, finally, mention one more approximation which is, by contrast,
a high-frequency or short-time approximation. It is obtained by replacing D(k, 1)
by its value ot t = 0, D(k). Alternatively, we might say that we replace D(kz)
by the first term in its high-frequency expansion, D(kz) = (i/z)D(k) + UAanv.

The constant D(k) is again determined by the f~sum rule, and given by

de -1 -2 pdw " n 2
D(k) = [57 D (kw) = % (k)k * [ o0 X" (ke) = y.mﬁﬁ , (2.106)

so that D(k) is real and positive. If we put this into (2. 94) we obtain

2
-k D(k
X(kz) = lu.llmv x(k). (2.107)
At high frequency therefore where this approximation is valid, we find reactive,
rather than diffusive, behavior. There is a sound-like mode, with a propagation

velocity at small k which is given by

w= ck; nmn::_ D(k) = lim %HMFM . (2.108)

k+0 k20 Kk mx

This feature, reactive behavior at high frequencies, is a very general
phenomenon. For a second example, a normal liquid like water is viscous ot low
frequency; it exerts no resistance to slowly varying shear forces. |f you dive into
the ocean softly, it will do you no harm. At high frequencies, however, the
liquid becomes elastic: if you fall into the sea from a high-flying plane your last
impression might be that the water must have been frozen.

This concludes, for the moment, what we have to say about our simple
example~--spin diffusion. Clearly, most of what we said applies to other diffusion
processes as well. At least for the spectrum at low frequency and wave vector,

the main input, really, was the fact that the magnetization is conserved. QOur

considerations apply literally to the isotropic Heisenberg paramagnet (Bennett and

Martin 1965) which can also be described by the simple diffusion equation.

B

[55)

2.11 Dispersion Relation Representation 4

(For large wavelength, the lattice structure does not matter.) Of course, while in
the liquid case treated here, diffusion comes about because the spins are carried
along by the atoms in the liquid, in the Heisenberg paramagnet the atoms stay

put on fixed lattice sites. The diffusion of magnetization takes place via spin-flip

interaction between neighbors.

An occasional reader might be concerned about the fact that we have

. . - ~+ - -
treated the magnetization as a scalar quantity. M(r,t) is o (psevda-) vector of

M > L.
course, and _:. a tensor. However, the vector character of M is quite irrelevant.

The point is that the Hamiltonian H is separately invariant under rotations in spin

space. Because of this property, which is intimately related to the existence of

) 4+ o . .
the conservation law (2.5), of course, one can treat M(r ,t) which is a vector in

spin space, as a scalor in real space. If you wish, you can take >>x ond _M\”
everywhere; the y~ and z-components obey precisely the same equations, with
the same diffusion constant D etc.
Many other processes fit our description os well. An example is the
Brownian motion of a heavy porticle immersed in a fluid of light porticles. In
chapter 6, we will consider this process in a slightly different formulation. In
this case, the mass ratio m/M plays the role of the wave vector k above.
Transverse momentum transport in a normal fluid also follows o hydro-
dynamic diffusion law, and everything we said above applies, mutatis mutandis, to
this process, too. However, the longitudinal behavior which has to do with
compressions and temperature fluctuations, is complicated by the fact that several
hydrodynamic modes are coupled. Another, and entirely new, aspect has to be

considered in systems such as the Heisenberg ferromagnet, superfiuid helium, or

liquid crystals. These are ordered systems, and we will have to discuss how the

presence of order affects the mode structure.
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3.1 Linear Dynamical Response

We are now interested in the dynamics of several observables

N
ﬂ>mA qli . If each of those couples to a small external field m,c.mx#ﬁw.c. 1
i 5
1

Hamiltonian in the presence of these fields is given by

CHAPTER 3

ext,

K =H-Z Tw}a 5a(7,1)

FORMAL PROPERTIES OF CORRELATION FUNCTIONS

) . . in Schr8dinger representation. As in secti i
The purpose of this chapter is chiefly to summarize the formal results g P ! ction 2.5 we colculate by time-

) erturbation theory the linear response. That i indd
obtained so far, and extend them to the important case where we are interested P 14 P That is, we want to know the :....,

I

-+

in the correlations among several physical quantities. In the simple example of 1 value of {B(r, 1) vsozlmn. - AmA.ﬂ.\ " vmnf * oAmA,_... 1)} for some variable B(

spin diffusion, we were only concerned with the “autocorrelation function” we start ot from equilibrium ot t = = @, and let the system evolve c:mmq,m.,

m>>>>A|q.*. Tt ’} of the magnetization, the probability essentially of finding the Proceeding exactly as in an:o: 2.3, we obtain ]

magnetization at the space-time point Toif you know its value at the point ZmAN&vH vu Lﬁ dt \Maﬂx«wm mmﬁﬂ. 1), bﬁwf M oowxaﬁw\: 9.
-

mJL /  Now in a liquid, there are several quantities of interest: the particle } _

) o . in particular, the induced change in the variable A. from its equilibrium
density n(r,t), the momentum density g(r,1), the energy density e(r ,1), ond may- !

t
N
be others. And these are dynamically coupled. A local imbalance in the energy ; mAbJT.L y=2 dt \.Tﬂ\wm x\H.Aﬂ?w; ‘Y 8 om...xxw\% y
P i i ~
j-

density (i.e., o temperature inhomogeneity) will result in @ spatially varying

where the response function is now @ matrix, and given by 1
particle density as well, for example. We are therefore led to consider such

-+ 9,

’ |- - -+,
rero, et vﬂ A!M|wﬂ..p>mA_‘~c~>_A«\* v'_ ) v

correlation functions as m:m%h; Ny = Tn(TH) e(FH7)) - (n(F (e (T ). xy&n; )G

Or else, since we found that the averaged commutator was a little closer to the
in a translationally invariant system. If we define its Fourier transform ay)

action, such response functions as thAw?.q.: N = ((1/2 7) TA._‘.J\ mAwJ 1. We

e o] 2+ 4 = .
P - teft=t V=ik -(r-r"
| therefore consider the general properties of multivariate correlation functions, X:Ar.._,v = ._, d(t-t ) ,_,QA Tm:w e (=t =ik (ror x\u.Aﬂl‘_‘.oT“
- __ A
© .

w

most of which are obtained by a perfectly straightforward extension from the case
and the matrix of response functions by

of a single variable. We shall treat the general, quantum-mechanical, case ) NG A_MEV _
- di; i
(kg =2 /
which is formally a little easier to handle in fact, and indicate classical limits x__A 2) cﬁ. T w-z (Imz#0) ,
where appropriate. This chapter follows in much detail Martin 1968; see aiso then we can write (3.3) in the form
Berne and Harp 1970. : aA>me.ev - x:A HEV oo._wx*A _.A.EV \

44
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where
- . N
.X:A_A_:v = lim X__ATNV _Nﬂﬁl.mm
e-0
" I*
;X0 (ke )
= vmmv ||_J_|.|||+m X\H.A nc,v , (3.70)
T - 1}

and where, here and henceforth, summation over repeated indices is implied. These
equations are perfectly analogous to those in section 2.5. Note one minor
. o d - - - " n
difference: X’.(kw) need not necessarily be real, for i # j. However, x:A i)
"
is always real.
-

Eq. (3.7) is valid for arbitrary external fields; it identifies x:ArNu as
a matrix of dynamical susceptibilities. Now in particular, we again turn on the
external fields slowly, (adiabatically), and we switch them off for positive times:

8.3 &' fort< 0 ,
i z
N
oowxx:; = (3.9)

0 fort >0 .

At t =0, such a field (rather, set of fields) will have produced spatially varying

values & A>.A|‘.L = 0)) whose spatial Fourier transforms are, from (3.3), given by
i

2}%;“37 xx:y ﬁ@ ) @ implied) 3.9)
i
where N
X (kw)
@ = mm i , (3.10)

- s . - -+
In the limit in which 6a(r) varies slowly in space, i.e., at small k, x:A k- 0)
will again reduce to a set of static susceptibilities, or thermodynamic derivatives.

For example, we will find that

v 40
m w op T

@.1)
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For t > 0, the system starts out from the non-equilibrium values (3.9),

ond left to itself it will relax back towards equilibrium. If we define
e ® izt
oAbJX_ANvu sdte oA>m?va , (3.12)
0

then from (3.3) and (3. 8) we get

(3.13)

or, using the definitions above and the static result (3.9), we get the fundomental

result

6AI(K2) = - [x(Rz) x '(R) - 1, SCAE 0, 3. 14)

. . - . - . >
which is to be read as a matrix equation. We will see that the matrix x(k) is

positive so that its inverse always exists.

Note the advantage of (3. 14) over (3.13). The external fields 8a.,
1

whose physical realization may sometimes be hard to assess, have been eliminated,
and the reloxation process appears now as an initial value problem. Egs. (3.13)
and (3. 14) are, of course, the generalization of (2.53a) and (2.54). Indeed, this
present section has just rewritten equations from sections 2.5 and 2.6 os matrix
equations. Life is that simple. Sometimes.

We have given these considerations in an operational form which has o
clear and simple classical limit. Indeed, since h occurs explicitly only in the
definition (3.4) of the response function, we obtain the corresponding classical

expressions by replacing (3. 4) by

" -+ |'\ 7 - t‘\ 14 -
x:T.? ) =K Mmb,m?;?b,m? t :v.w.v classically. (3.15)

Otherwise, the whole development above goes through unchanged. The Poisson
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| as the classical i t ivi 1
bracket appears thus as usual os The classical equivalent of @ commutator divided by ! 3.2.1 Generol Properties
in case the observables in question have, themselves, a clear classical meaning A ibri Lo . 3
n equilibrium system is time translation invariant, so that _

1

(Dirac, 1958). The definition of the Poisson bracket is the standard one. Classical-

i/ AN y o,
- A, 1 = ey
ly, the 3503?0_ variables PmT.J are functions of the canonical positions 7% and x__? i) x:A.‘Z itt). (3.19)
o
momenta p of all particles, of some common time, say t = 0. Then . v, .
. X A i Therefore, a Fourier transform x:?l ‘4 ) with respect to the time difference
2A(r,1) an(r'th) 3A (1) BALr ) . .
o 2, _ i i i i variable can be defined.
A(r 1), ALt )] =2 —_— ),
i i P.B. o wm.n wLQ w&o_ wﬂa
P P Three additional properties reflect the fact that X%, is o commutator
(3.16) i
oy -+
of hermitian operators >m?, ,f) which have, by assumption, a definite signature
+ . 4 o
where >%5& = >._TL1 Lrop ..y To demonstrate these statements, one mw. ynder time reversal. They are
starts from the Liouville equation
. ™ PR A ind
0 V:A?:.‘ )= IX:TJ_ irt) Anc:.._.:c»o*o&
w*ns = [K(t), oQZm 8 with p(t=-0) =9 . 3.17)

=|o|o~.~
= |mx:Ts:5~ }J* (hermiticity)

where classically the density matrix o(t) becomes the N-particle phase space

- TT. 0,2 2 ¢ X ,
distribution function, o(t) = ol - WQNQ. .}, in terms of which averages are =T mm x:?\lx_. ~t’) (time reversal), (3.20c) J
defined as usual, or for the Fourier transform
ALY = Tr, oA/ Ty o () (3.18) 4
v, = Ir o} r, r o} . . i L . PR Bind ‘_,
cl cl ,. X..{r,r ;) = lxmm? s Cl.é Am.wdov v
Here, fn_ is the classical phase space integral. The reader might find it @ useful -y 1e
= TLA.
U
exercise to solve (3. 17) to first order in the external fields, and so recover the
_ TT w2
= mee () (3.21¢);

equations of this section.

T
€ is+ 1 for the mass or energy density, €.9., and -1 for the momentum or spin 3

3.2. Symmetry Properties density. (3.20c) and (3.21¢) hold forsystems for which both the Hamiltonian o:n—w,.w

The matrix of response functions has a number of symmet roperties . B . .
P Y Ty PYOP the ensemble are time reversal invariant, the situation most frequently
which can be directl obtained from its microscopic definition (3.4). The . L.
Y P (3.4 encountered. Of course, if the system is ina magnetic field m~ this changes sign'}
derivation of these pro erties is quite strai htforward, and we leave it as an e
rivati e properh qu g ’ under time reversal so that (3-20c), (3.21c) more generally read

11 find some help in the paper by Kadanoff and Martin (1963).

exercise. The weary wi
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“EAB) = - e el x (T -tit -t h-B), (3.220)

(3.22b)

it
1
™
o
>
o~
=
i
]
1
w
-~
.

nd - -
B need not be an external field. In a ferromagnet, it might be the spontaneously

produced internal field. Namely, while in a ferromagnet, in the absence of ex-
ternal fields, the Hamiltonian is invariant under time reversal, the state is not. |f
you turn all spins backwards, the axis of the spontaneous magnetization will flip

over.

3.2.2 Isotropic Systems

We will be mostly concerned with isotropic systems which are, in

addition, invariant under spatial translations, rotations, and reflections (parity).

Then
X ? LYoty = x\muﬂuf £ (3.23)
= %%x:-q L) (parity), (3.24)
where mﬂv is the signature of >MA._‘..& under parity; i.e., P 1 for the mass and

P

energy density, spin etc., and € ==~1 for the momentum density. Corresponding
relations hold for the Fourier transforms, X:Ar w).
It is useful to separate the various symmetry properties into their

hd . .
effects on k,w, ond the variable indices i,j. We get

R = el bE e = el i (Fn)

- _TI7T “( _ PP
= -e m_x: = mmmx._A _Cev. (3.25)

Consequently, x..ﬁ w) is either real and symmetric in i ¢ |, or imaginary and

Formal Properties

3.2 Symmetry Properties 55

" d
antisymmetric. Usually the former; one of the few correlation functions X" (ku') of
. . . . . . - nd

some practical use which is imaginary is that which links the momentum density g

. . pad
with the spin density S.

We have not yet used rotational invariance. |In this case, little is to be
gained from general formulce. Yet, the matter is simple enough. For example, the

#” bad - . -

density-density correlation function x::? ¢) in a liquid must be a scalor. But there

-+ N
is only one scalar that one can form from k: rw. ,Z_c.f xw:?.&v Bcﬂvwomcsn:o:

of k = __M | only. Or consider the momentum density correlation function
o A_A w). It must be a tensor. Now from mf one can form three tensors:
@
|

r.xﬂ and m.. r where o: is the Kronecker symbol, and €L the Levi-C

' t
symbol. Thus

@ s ? w) = o.. A(kw) + k, r B(kw) + m: rr Clke) , (3.26)

where the three functions A, B, and C depend only on k = [k|. Actually C(kw) =0

since xm . is even under parity. So this is how symmetry is used.
[

3.2.3. Crystals

An ideal crystal is, of course, not invariant under arbitrary translations
and rotations but only under those which bring every lattice point into an equivalent
position within the lattice. This means, in particular, that (3.23) is no longer
true. A Fourier transform must now contain two wavevectors of which one is
discrete, reflecting the periodicity of the lattice. The matter is essentially trivial.

One normally gets by with

r?un v ...:

x..::; = v a7 [d7 D), 3.27)

if one uses experimental probes whose wavelength 2m/k is much larger than the

lattice constant.
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3.3 Positivity of w ¥" ;&) and Dissipation Wiener-Khinchin theorem (which is simply the statement that dt A*(t)B(H) =

. . e dx A*(+)B(1)) and the general result (3.7 btai 2
In section 2.8, we proved an important positivity property, namely that 7= E 9 esult (3.7), we obtain, to order (8a)",
it . . N . . . . . . -
wx'(kw) is non-negative, In a fasion that easily applies to multivariate functions. _ pd pdk . N - N .
o AW = T3 (-1) Z Bor(ier) wx (K, m)8e (k) (3.31) 4
The general statement is that for any stable system, Ex\mmAF r4w) is positive (semi-) @ a1
-+ -
definite if considered as a supermatrix with indices i,r and j,r’. Or in translation= ] where x:cw%v is as given in (3.7a). The fields oomﬁ.ﬁc are real so that

- -
aowﬁ?iv = oomAlr.r,_,v. Hence the principal value part of x:c.m‘ 1), eq. Aw.w,,

)

ally invariant systems,
b4

which is odd under -+ , does not contribute to (3.31). We
-+ - .
* gy > . .

me ol pxmm:ﬁ:v n_m >0 for all k and w, (3.29) therefore obtain
for arbitrary o d dk
- | _oprduop 3 * I w - .
i AW T 5 _yw N bat (k) .._x:? ioom?; >0, (3.32
— _\m "

Our previous proof was statistical, involving the fluctuation-dissipation

theorem which continues to hold true here. |t is very instructive, however, to

consider the matter by an alternative, dynamical route which is taken from Kadanoff arbitrarily chosen, we obtain eq. (3.28). :

and Martin (1963), and inquires into the dynamical significance of (3.28). We ! Of course, our conclusion holds only in a stable system. In network

consider the total energy, W(t) = tr e(t) X(t), and its rate of change theory, one would say it holds in a "passive network". A laser is not dissipative]

after being pumped, and (3.28) will fail at the lasing frequency. However, the

dw AX(t) » 0 4 ext:o
2= i o(t) — = -2 (drltr p() A(r) )= 080" (nt . . .
ar (1) 351 . U _A ) 2t (1) equation (3.28) will certainly be true for any system which is in thermal equilibri§
Undercooled liquids? Yes, for those it holds, too. (3.28) indicates stobility will
= -M?ﬂm}?ig + 223;5% ?w: B (3.29) T
; . respect to infinitesimal disturbances. In this sense, an undercooled liquid is quitg

ext . .
Only the external change, ~ w» 8a° '), contributes. The internal change, stable (metastable). You have to shake it, softly but with some determination,

~tr p(t) X(1) = ?3.._ trip(t), X (1)1 () = 231_ tr p(t)BC(R), }K(1) ], vonishes. make it crystallize.
The equilibrium term in (3.29) does not contribute, on the average. The total
work done on the system must be positive, and it is given by 3.4 Sum Rules
Exactly as in section 2.9, one obtains from (3. 4)
T aw ! 4. ext+ . 0 -+
AW = [dt o = Z [dt [dréa, (r1) 57 8CAL ), (3.30) du o n
. } " ’ 1 n -+ -,
7 P AT Tﬂex:?: o) = (£ (3 3?.?3? 1)

where T is so large that the external fields vanish before =T and after T. Using the

i -
- <5 m..f.rv.mu..:mf{qrzv. (3.39) §




§
)
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These expressions, which can be cxactly evaluated in some cases, furnish coef-
ficients for a large z expansion of the response functions X:CNV. Their practical
importance is in their use for interpolation schemes as discussed in sections 2.10,11,
since the sum rules represent essentially the only results of numerical use which can
be rigorously obtained from first principles. The most important sum rule, similar

to eq. (2.78), is the f-sum rule for the particle density correlation function,

dw -+,

Ex\\?q.c.w
™ nn* T

-+ - 4,

(39 ) (T 6E-1") (3.340)

1
m

or

(3.34b)

for a translationally invariant system. Its proof is obvious from the analogous proof

of eq. (2.78).

3.5 The Fluctuation-Dissipation Theorem

Here again, we have done all the work in section 2.7. f we define

fluctuation functions in thermal equilibrium by

(e 0] . \
w:mﬁé = [ d-t Aottt vx)m;-smm\%x\,m@;-}m:.:?
-
(3.35)
we obtain from eq. (2.67b)
x‘xu.ﬁi = ni;cé-?,y m:m..u: (3.36a)
x\\_%.é nﬁe-_:-m-gvmamer (3.36b)
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in a translationally invariant system. Another useful function is the symmetrized

fluctuation function
e:ﬁﬁl 3 = Aw?mm:}mi V-A{N;Z»_m\.i? (3.37)
whose Fourier transform G:Tco is given by

e:mhf; = # coth(h=f/2) x\rm.us vy, (3.38)

and so its symmetry properties can be inferred from those of X\MMCEV.
Classically, the functions S and © are identical!, and the fluctuation-

dissipation theorem becomes

PPl -,
K:QL i) = Am\mv%m:nfﬂ ;) classically (3.3%q)
or x\mu.....q:u-tv = (B/2) i3, m:ﬁh\;-&. (3.39b)

It is a useful exercise to derive egs. (3.39) classically, without taking the detour
via quontum mechanics. For some help, see Martin (1968).

The name of the celebrated theorem is now clear. It relates, for any
system in thermal equilibrium, two physically distinct quantities of fundamental
experimental significance: the spontaneous fluctuations on the one hand which
arise, even in the absence of external forces, from the thermal motion of the
constituent particles. Described by S, these fluctuations give rise to the scattering
of neutrons or light. And the dissipative behavior of many-body systems, on the
other hand, describing the fact that all or part of the work done by external
stirring forces s irreversibly disseminated into the infinitely many degrees of
freedom of thermal systems. This characteristic property is described by ¥ as we
saw in the last section. The former property is an essentially statistical one (albeit

ultimately of mechanical origin), the latter property is an essentially mechanical
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one (albeit not without statistical implications).

PH,

Qur proof has beenbased, specifically, on the canonical ensemble ~e :
it goes through unchanged in the grand canonical ensemble ~ mlmAIutZV as well.

In fact, as our discussion of neutron scattering after (2.63) indicates, the theorem is
more generally valid. lts fundamental connection with detailed balancing can be
exploited in a dynemical proof. Indeed, in a sense the theorem can be used to
introduce temperature into a correlation function description. This is its fundamental
significance, most clearly recognized in the Green's function techniques developed
by Martin and Schwinger (1959) and others. See also Kadanoff and Baym (1962).

This remark is of practical import for systems such as ferromagnets or
superfluids in which there is spontaneous order present. If such systems are
described by the canonical or grand cononical ensemble, the fluctuation—dissipation
theorem foils for certain variables. What has to be done, then, is to restrict the
ensemble (by specifying order parameters) in such a fashion that the theorem is
reinstituted again. We shall discuss examples of this procedure.

We end this section with another but related remark. There are two
features which enter any theory of many-particle systems: one which is mechanical,
summarized in the Schrédinger equation or Newton's equations of motion, and one
which is statistical, summarized in the averaging recipe over a properly chosen
ensemble. The former is straightforword in principle though formidable in practice,
the latter is much more subtle. These fwo aspects can, of course, never be
completely disentangled.

However, as we have poinfed out above, the response function X AN.-(.&
is largely a mechanical quantity. This is indicated by our derivation of linear

response which is characterized by X", a purely mechanical derivation which makes

but implicit reference to statistical questions. It is very clearly indicated by the

3.5 The Fluctuation=-Dissipation Theorem

f-sum rule (2.78) which holds in any stationary ensemble, expression nothing byt

the conservation law (2.3) and the commutator (2.77). The fluctuation functions

g - . - . - « e,
s(r,r 31) or ofr,r “t) are much more statistical. Even in their definitions, eqs. 3

or (3.37), we had to subtract constant terms to avoid contributions ~8(4:) in :ﬁmn@,

spectrum, and we had to argue that because of the presumed statistical independ
-+ A ‘ . 2 L
of Afr,t) from A(r,t ") for large |t-t ‘], these terms were given by (AY". This v
assumption is one of ergodicity or more precisely, "mixing” which implies
ergodicity (Lebowitz 1972), and it is a subtle affair. It is best, therefore, to b
theoretical considerations upon the more mechanical and straightforward respon

-+ :
functions X"(r,r " ;1), inferring fluctuation properties later from the Nyquist theod§

The response functions y” have an additional property which is very
welcome in systems with long-ranged order (superfluids etc.). We will always

interested in local observables >n.wv\ i.e., voriobles which depend only on

-
properties (position, momentum, spin) of particles ina small neighborhood of r

Even for quantum systems in which particles are indistinguishable, this is a valid

Pul 4 - - &

concept: A(r) depends only on creation and annihilation fields ¢ (r'), r ‘YW
-+ - il
-1 | small, say of the order of the force range. This means thot the commutats

Tymﬂw?\xmq\:\ vanish if 77 is far from ﬂ.. and therefore the functions

e
x\\:qu ‘. +=0) and their time derivatives at t =0, or else the sum rules

n>0

’

22 )
P .X: FANN] ’

. - I’\ .

fall off very rapidly as fr=r’|4c0. They are of short range. One might argue
- -+ X

nce:f.::JEmﬁro::uc__vk~ that the commutator function x\mwo;.- ‘t 'Y ought to van®

- -+ - - .
7' is far from r since then, measurements of >”A?3 and \JA_‘ ‘t’y do not intef
This is not always true of the statistical functions, e.g.,

Ao - [99 ¢ @700 . ALY
mzcz 4=0) = Hm. m:?. ;w) . @
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It is a fundamental property of ordered systems that certain functions of this type fall

-~ 3 -, -3, .
off very slowly as |r-r |2, os _uq.ln ‘| ¥ (vide, the momentum density correlation

L. . -1

function in superfluids, chapter 10) or even as [r=c’] " (vide, the tronsverse
spin correlation function in ferromagnets, chapter 7). This appearance of long-
ranged order can, of course, not be avoided, it is real and of great experimental
. e . . - g l’\ . .
significance. However, the static correlation function S{r,r ';t= 0) is essentially

. - . P adndi .
a time integral over the function X' (r,r ";t}, as seen from the formal expression
(2. 67a) or more clearly the classical equation (3.3%9b). In a formulation based on
x", the long-ranged nature of correlations appears therefore, properiy, as a
cumulative effect.

It is helpful in this respect to introduce yet another carrelation function

C(t) defined so that (3.3%9b) is frue quantum-mechanically, i.e., so that

-+,

” - I.\
mﬂﬂ: ) = 2/B) X:A_.\_‘ ;). (3.42)
This is the Kubo function (Kubo 1959), and it can be written in the form

n.mmhslq u w-,?mﬁ?mb)mifai- (A)(AD1,3.43)
| O 1 1

as one shows easily from the fluctuation-dissipation theorem. We have already

encountered its Laplace transform

@ izt — -

C.( 7z = [dte” o: 7Tt (for Imz>0) (3.44a)
0

5,

1 de X9
= B %ﬂ_ |a.A|E||Nv|| (for Imz # 0) (3. 44b)

- :\ﬂm:x:mh\nv- X (7101, (3. 44¢)

which describes relaxation in the most direct fashion.
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With the last few remarks, we are a few steps ahead of the development
since the system treated in the next chapter, the normal fluid, does not exhibit any

long-ranged order. Who, though, would not like a little advance notice of future

noEn:oe:o:m@



CHAPTER 4

THE NORMAL FLUID

In this chapter we will use the methods developed above, to analyze
fluctuations in a normal (isotropic, not superfluid) liquid or gas. Of interest are
fluctuations of several physical quantities: the particle number, momentum, energy
and entropy densities, and a few others. The most important of these are density
fluctuations whose spectral function is given by

©
r

;
s (ku) = [ dt [de

-

-
iwt-ik.r
(

(", )-n)(n@,0)-n)) , (4.1

- -+
where n(r,t) is the particle density operator, n = {n(r,t) vmm_ the equilibrium value

of the density.

m::? w) is called the dynamical structure factor, and it is one of the
most important quantities in the theory of many-particle systems. It is the density
fluctuation spectrum that is measured in inelastic light, X~ray, and neutron scat-
tering experiments, to name only a few applications. In a typical light scattering
experiment, for example, one sends a laser beam of frequency v, and wave vector

-

_J into a liquid cell. One then looks for scattered light with frequency we

=m, -0
i

-

iu.
and wave vector r_" = rmlr see fig. 4. 1.

kl=2]k | sin(e/2) (4.2)

60
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In analogy to magnetic neutron scattering

is given by

.. .
_ ~ [ factors times ] m::? w) (4.

s shown in the Appendix. The bracket contains kinematical factors which arl
a

important for our purpose.

Light scattering experiments have been performed on many liquids

gases (see, for example, the recent book by Berne and Pecora 1973), and at

encies the spectrum found looks as shown in fig. 4.2.

frequ
S(kw)
k fixed,
~k2
Fig. 4.2 ck w
There are three Lorentzian peaks, the central "Rayleigh peak" (caused by

diffusion) and two symmetrically displaced "Brillovin peaks" {caused by sou

waves). Much of the effort in this chapter will go into deriving this spectrul

Since the wavelength of light is so long compared to interatomic

be sufficient ¥

distances in a liquid, we expect that a continuum theory w

i ive it i il from the
explain this spectrum. indeed, we will derive it in all detail fr

phenomenological, linearized Navier-Stokes equations of fluid dynamics,

. . . —
obtained, in chapter 2, a simple Lorentzian spectrum for magnetization flu

i t
from the spin diffusion equation (2.7). (In fact, as will be more apparen

i is tantal
presentation,which follows the paper by Kadanoff and Martin 1963, is tan
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a derivation of the equations of hydrodynamics, a fact which does not seem to be
generally appreciated.)

Fig. 4.2 contains an experimental clue that shows that a hydrodynomic
theory should be sufficient: the widths of the three peaks are measured to be
proportional to rwm they become extremely narrow in forward scattering as k = 0.
Consequently, each of the peaks must reflect a collective process whose lifetime
7{k} lr..N becomes infinite as k #0: the trademark of a hydrodynamic process.

Now we saw in section 2.1 that there is a hydrodynamic process

associated with each conserved local variable. And so we begin with the five
. . - . . g 0 ndnd
continuity equations for the particle density n(r,t), the momentum density g (r,t),

and the energy density € A._‘.Lv"

- -+ -
w_,:A?: + V-g(r,t)/m = 0 number conservation, (4.4a)
-+ -
w..@%?& + <m4:?~ t) = 0 momentum conservation (4. 4b)
- 3 e .
w*mc.‘qv + Vi (r,t) = 0 energy conservation. (4. 4c)

2
Here, |

stress tensor q: functions as the current for the momentum.

For definiteness, let us write down microscopic expressions for these

quantities even though we will make little explicit use of them. We take the

For the noble gases like argon, this is adequate. The Hamiltonian is then

2
“a [Cra) N
H=Z2_ 4 WQM w(I7e =B, (4.5)
a,f

And the microscopic expressions for a classical system (quantum-mechanically,

The Noma! Fluid

is the microscopic energy current density (operator), and the microscopic

case of a "simple® liquid, i.e., an assembly of identical point particles of mass m

..
which interact through a central pair potential v(r) = v(|r |) which is of short range.
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-
they simply have to be symmetrized in r% and Wo& as in (2.4)) are the following:

nr,t) = wu 8(r-r") , (4.6)
g (r.t) = Z p’6(rr),
QM
cr) = ZER 41 T o)1
! a 2m 2 B !
nw% 1 B ! Caf x op
= T—L o) -5 <P V(™) [dn (e~ -5 1),
o I 0
QM vn
1 .
:mﬁ_‘\a = m mMB +M mW<Tomvul-ﬂ“.. aA_.l..Qv
> 1 anm v ?Qm: o, mv .w. d) 8- ~Q+_.m. A qomv
o T P TP o 7 2 ‘
where ﬂom =7 ﬂm and <~AQ = v(r), and where the positions 7% and momenta ma

of all particles are to be taken at time t. For clarity, all vector arrows have been
omitted. Similar if a little more complicated expressions can be written down for
a molecular liquid. In fact, all the hydrodynamic results obtained in this chapter
are rigorously valid for isotropic molecular liquids, too.

The method used in this chapter is the one presented in chapter 2. A
different approach which we will develop in later chapters, is applied to super-
fluids in chapter 10and can easily be used for the description of normal fluids as

well,

4.1 The Equations of Fluid Dynamics

The continuity equations are microscopically rigorous but they do not
yet make o complete theory. As in the spin diffusion case, »_‘_my‘ have to be

supplemented by macroscopic constitutive relations. In order to have all the

equations together which constitute the linearized hydrodynamic theory, we
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<hall write them all down first, and then explain.

Conservation Laws:

2, )+ T el /m = 0, (4.7a)

3, m._m‘; + q_q;m.b = 0, (4.7b)

3, @y +vitE = o. (4.7¢)

Constitutive Relations:

GENY = mnv@E, (4. 8q)

- Rﬂbo: - 3?3@;?q?mb-wm. %.u;ﬂ (4. 8b)
T 5
FECHY = (e+p) v(Bh) - n T 1. (4.8¢)

Thermodynamic Relations:

BEn = Aw,mr?:m;ziwm:«Amm;? (4.9a)
JIEh = %rmgm.cfA.w.wvm?mm;:. (4.9b)

Here n, ¢,p are the equilibrium values of density, energy density, and pressure,
e.g.,n= A:n._ﬁ t) vmn. . Rwly .2.«.. t), and <A._w\ t) are the local values of pressure,
temperature, and (average) velocity, in the non-equilibrium flow state. The
coefficients in (4.9) are normal thermodynamic derivatives. And the three
transport coefficients in (4.8) are called shear viscosity (), bulk viscosity (C),
and heat conductivity (%).

These are the Navier-Stokes equations of fluid dynamics. (See, for

example, Landau and Lifshitz 1959.) They are linear because we have mode them

4.1 The Equations of Fluid Dynamics

that way; more generally, there are terms ~v.v_in { ~_ ), for example. Howeyg
L I v

x" gives the linear response, and so to obtain x” the linearized phenomenologicq
egs. {4.8,9) into (4.7) one obtains 5 coupled equations for the five densities {n}
N !
{g>, {e). These equations involve, of course, a number of coefficients which ¢

main undetermined, namely thermodynamic derivatives and transport noommn_m:?..
the parameters of the hydrodynamic theory, just as the spin diffusion coefficient
was in chapter 2.

And now to the explanation. Hydrodynamics is valid when, after a
initial period of rapid and complicated motion, the system has reached local
equilibrium, a state in which, for example, the pressure at .«.L is at equilibrium
with the local values of density and energy density. This state of affairs, 2.«..&.

- -

_umn. (n(r,1), €(r, 1)), is expressed in eqgs. (4.9).

The non-derivative, reactive terms in (4. 8) are of the same nature,
can be inferred from a Galilei transformation. Generally, the relations betwee§

quantities in a stationary medium versus one that moves with constant velocity

are given by

o7 1) = moﬁw;«.?; ‘v Baoﬁw:wr& , 4.
-
T.(r,t) = %. +v mc + <.mwV +v.v, :So (4.1
1} 1] (] 171 i ’
LES .e0 0 0 ’
:A?s = _.m +v. (..t e o:V + <m<mmo + W <m8w+ <m3:or?. 104

i i
as con be easily verified from eqs. (4.6). All quantities with superscript O refef;

. -+ -4
the system at rest, and their arguments are (r-vt,t). But in o narmal fluid at re

40 _=¢0 0 . .
g =j =0,and 4: =p o:. In a system which moves with the local veloci
M

-+
v{r,t), and omitting terms of order v, we obtain the reactive terms of (4.8).
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The dissipative terms in (4.8) account for the fact that, for example, a

. +_ -
temperature gradient ¥ T(r,t) will produce an energy current even if the overage
velocity is zero. Similarly, the two terms in (4. 8b),which are the only ones
compatible with isotropic symmetry, account for frictional stresses due to velocity

. .€ . .
gradients qm<_. . Aterm a: ~AIx <vm would be possible by rotational symmetry,
but is ruled out by parity.
Egs. (4.8) are thus the result of an expansion of the current densities to

. ] . . -+ -+ -
first order in gradients of the local conjugate forces v (r,t), T(r,t), and p(r,t). If

so, we have fo justify the absence of dissipative currents driven by a pressure

gradient. Why are there, more generally, no terms of the form

, (4.11a)

&
1l
]
>
<l
:>|_°
1
>

;
5°-S0g) = -a (4.11b)

which would be allowed by symmetry? The answer is that these terms would violate
momentum conservation. To demonstrate this fact is a good but not trivial exercise;
note the Onsager relation y: =X\, to be proved below. Actually, this question

q gn

is much more easily answered in terms of correlation functions, and we w

therefore

keep it in store until section 4.6. (The argument given by Landau-Lifshitz, 1959,
p. 187, is not correct on this point. It is true that y:: “uT - ywn >0 so that if

A vanishes, A _ must vanish, too. But A =0 can o:?wmm:ﬁm_‘qmm*woa*rmmon*
nn ng nn

that the flux of the particle density, i.e., the momentum current, is itself

conserved. )
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4.2 Solution of the Hydrodynamic Equations

The Navier-Stokes equations present, in general, a problem of
considerable complexity (see e.g., Chandrasekhar 1961). In (4.7-9), we have
already simplified this problem enormously by omitting non-linear terms. We shall
furthermore eliminate boundary conditions by considering a simply connected medium
of infinite extent. In terms of spatial Fourier transforms, we are then faced with a
simple initial value problem.

4.2.1. Transverse Fluctuations

Inserting (4. 8b) into (4.7b), one obtains

B3R BE NN - F GG 1)) = 0.(4.12)

mn mn

3,467 )+ Ve(F,1) -

This equation separates into a longitudinal and a transverse part. The momentum

-
density g, like any vector, can be split up in the form

-+ + - -+
o(r,t) = mhA_.L.v + m*?kv , 4.13)
where
Vxg, = 0 and «.m, = 0. (4.13q)

For the transverse component, we then obtain

@ -1 AGEN = Omy (4.14)

which is our old friend, the diffusion equation. And as we did in section 2.1, we
solve by performing the Fourier-Laplace transformation (Iimz > 0)

2
kr —+

@D . -
@ (kz)) = fdte'™ faf ¢ T @ (4.15)
0

The solution of the transverse initial value problem is then
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(3. (F)) . . (F,1=0)) - (4.16)
f z+ik n/mn

1

Witness the diffusion pole at NWL_AN n/mn, in the lowerhalf plane, corresponding to
a hydrodynamic lifetime (k) = EJ\AJ_AMV + wosk =0,
4.2.2. Llongitudinal Fluctuations

The other equations are only a little more complicated because they
couple the longitudinal variables. By using the constitutive relations (4.8) and the

conservation laws (4.7), we find
w?m.;f (g, )/m -0, (4.170)
4 -+ 4 - 4 4
w*Ambo‘va + op(r,t) - An+wjv\¢s:v v(v- AmﬁA_‘vav =0, (4.17b)
5 (e(f, 1)) + (e +p)3- @, (1) /(o) - T 0. (4.179)

The second equation is really a scalar equation since all of its terms are paraliel to
. -+
v, i.e., k.

(4.17a,¢c) combine fo
3 e () - R (o7, 1))3- «PIE =0, (4.18)
which indicates that it may be convenient to introduce the variable
oGty = elrn -SE n(r 1) (4.19)

in place of the energy density. Its physical significance becomes cpparent from the
thermodynamic relations (4.9) which, after the usual headache with thermodynamic

manipulations, take the form

4.2 Solution of the Hydrodynamic Equations

(1) = vi% Y+ Aww Tla(r. 1)) . (4.20q)
-+ Fo) - - -+
3@..; = A%m vin(r, ) + W\AWL vig(r, 1), (4.20b)

. . . - -
where § is the total entropy. These equations identify q{r,f) as an operator for

(T times) an entropy density. The corresponding thermodynamic identity is

e+p
n

Tnd(s/N) = de-

dn, (4.21)

where S/N is the entropy per particle.
And now let us, once again, write down the three longitudinal

equations (4.17). With (4. 19,20), they become

W*Asv + d.\mhv\i 0, :
e /o) P20, 04 (S )7+ Y (S @ - 0, :
a-x ) £1q)- ,%wwm%@ - 0, (4.224

. -+ Bk
where we have omitted the arguments (r,t). These equations are again of the Q»,,

(2.7) or (4.14), with the minor difference that there are now three of them, co

To simplify their appearance a little, we introduce a few names:

Dh = ﬁw. n+ C)/mn . 3
N T 135
mne, v Anwlav: pomney Y Awltn !
2 _ _ !
€ AwB: S - <, Aw:..sv,_. . .

D, is called the longitudinal diffusion coefficient. mc and mc_ are the spe¢

L v P

heats per particle, ot constant volume ‘and pressure, respectively. And the inv4




.m
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2

adiabatic compressibility,

Again we do a Fourier-Laplace transformation as in (4.15).

(4.22) into the matrix form

z ~k/m

~kmc z+ik

2 3T,
ik % wzvm

For the moment,

matrix for homework. However,

inquire into the poles of A:Am.va etc. on the complex z-plane.

the determinant of the matrix i

« will be found to be the (square of the)

0 | _IEEV ]

V.3 S
o, ¥ || i

.2 ~+

z+ik 3“0 TQ?NVV 4

v

n (4.24) equal to zero. For small k, th

cubic equation for z is solved with little difficulty, and yields

The MNormal Flyig

speed of sound,

This brings

WAJAWLHOVV

-4

@, (k,r=0)

(’b

|
fall,=0)) |

(4.24)

let us consider this a result, leaving the inversion of the 3x 3
to get some physics out of what we have, we will

That means to set

e _.mmc_Zam

z = +ck 3 Mﬁ (sound poles) , (4.25q)
_ 2

z = -ik Oq (heat pole), (4.25b)
up to terms of order rw. Here, the heat diffusion constant Uﬁ is given by

U._. = x\:.:n*V X (4.25¢)
and the sound attenuation constant T by

on nmU 4
r = Oa+ U._.Aﬂ -1 = _u._.Amll N+ AMJ +C)/mn. (4.25d)
v

Note that all three poles lie on

the lower half of the complex z-plane which is a

.
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relief for the stability-minded, and that they are all, of course, hydrodynamic;

k) ~k

4.3 Thermodynomic Sum Rules

We have solved the hydrodynomic initial value problem, obtaining
egs. (4.16) and (4.24) which are of the same form as (3. 14), and therefore allow a
comparison with the formulction of the same problem in terms of correlation
functions. To make that comparison, however, we need the static susceptibilities

X..{ v at least for small k, which are not determined by the equations of motion.
__

These susceptibilities are instead determined by equilibrium statistical mechanics

as we saw already in section 2.4. Before listing them, let us introduce a useful

notation. We analyzed the symmetry restrictions on the momentum density correla-

tion function in (3.24). Accordingly, we can separate this function into a

longitudinal and a transverse part by

k.k. k.k.

“ = P e -0y ke .
X (k) = 45?.520: 2 ) (k)

(4.26)
mmmm k

This splitting is clearly equivalent to that in eq. (4.13). (k) are real

x?,
functions of k = _i_

, odd in .

And now the susceptibilities:

~duw

on
limx () = lim 2 G/ = nEH;, @.270)
k-0 k-0
N _ b
timyx_ (k) = lim [ (kw )/ = mnc T - (4.27b)
L 99 ko' T 9 P
~ QY oSn
lmx () = lin (S G = TG, @270
k=0 ™ ka0
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x%& = = mn, (4.27d)
lim xnarv = = mn, (4.27)
k=0

x@.s?v = xm.g?v = 0. (4.279)

The last two equations, (4.27f), are a consequence of time reversal
v o ” - .
symmetry. By eq. (3.25), Xm :?Ew\e and xm n?ev\s are odd functions of ¢, and
i i
their frequency integral vanishes at all K.
The three equations, (4.27a-c), follow by an analysis parallel to that
given in section 2.4, Considering (4.27a), the fluctuation-dissipation theorem

(3.36) gives

x (9 = 19 oy(i-e Py /no (4.28)

J92m 33

Next, we notice that in the limit as k=0, m::cﬁ_o ~ &(w) because the total number

-+ -
of particles, N = .T:_Af&. is conserved. Thus we can write

dw
lim X, Arv = limp (kw) = limBs_(k,1=0) (4.29)
k=0 K0 %mj nn kap D
or
X (k=0) = B(N-(ND) = BANN-(ND, (4.30)
Finally, in a grand canonical ensemble,
n = E = tr mlmAT_«tZVZ\? m.._wAIJLZv (4.310)

\

and therefore

= (B/V)IN Znfy = : (4.31b)

w:v
3B,V

4.3 Thermodynamic Sum Rules

The last equation foliows from the thermodynamic identity dp = ndu + (S5/V) dT
relating the pressure p to the chemical potential . This proves (4.27a). The othe

two thermodynamic sum rules, (4.27b,c), follow similarly but after a bit of thermos

dynamic manipulation.

We add two remarks. The first which is minor is to point out that

formally , whatever A and B, ;

lDAI V@v)\ H !UI a&@ mm I OIU\I> , AkwNw

Il:m

2N 0

from which it follows that, for example,

1|2

0100 = (9% 0" (k=0 4}/
BC_(k=0,10) = | x%?éb\f (4.33)

where 0:: is the Kubo function defined in eq. (3.43). To establish (4.27) 1.63..;'

fore, the fluctuation~dissipation theorem is necessary but the conservation laws o,,,
not.

The second remark has to do with our choice of ensemble. If we were
interpret {4.30), rashly, in the canonical ensemble which holds the total number
particles fixed, we would find x::?uov = 0. At finite k, with _A.,_ small compa p.
to the linear dimensions of the container, x::ﬁ& describes local fluctuations of
particle density, and is independent of the choice of ensemble (among the v_‘ovm...”
ensembles: microcanonical, canonical, etc.) as well as of boundary conditions.
To eliminate such dependence, we have to consider an infinite medium, i.e., td
the limit V = oo first, with N/V = n fixed as usual, and k=0 second. If, for prog
tical reasons, we want to caleulate lim X (k) by equating it with x(k=0), we co¥

k-0

do so only in an ensemble which allows, even for finite V, fluctuations of N as

take place locally, i.e., as if the system enclosed in volume V where a part of
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much larger system with which it freely exchanges particles {and energy). This, how-
ever, is the characteristic property of the grand canonical ensemble.
Eq. (4.27d) is an immediate consequence of the f-sum rule (3.34) which

in turn expresses the equal time commutator

-5 -+ 3,

[n(r), glr’)] = ~-in v :?v S(r-r’). (4.34)

We only have to use particle conservation,
- + 4o
W+ DA_\-_,V = -9V g Aﬂ.,c\g == mvmﬁﬂﬂd *V\—j ' A&wwov

in the form

N 1 N a N
)y = 4
x::eé.v k xacﬁ&\ﬂ (4.35b)
to obtain eq. (4.27d) from (3.34). Note that this sum rule holds for arbitrary k.
For a classical system, the transverse sum rule (4.27e) is also exact for

all k. By the classical fluctuation-dissipation theorem (3.39),

44,

_ & =, =ik(r-r")
00 -Blas 2 = g Jd(r-r")e (g, e, () (4.36)

Now the classical equilibrium average is easy to calculate. In a canonical or

grand canonical ensemble the momenta of different particles are not correlated

o Py -
so that A_u P )= a._o?m

momenta factorize, we obtain

m/B. And since,classically, averages over positions and

Ammﬂ.& mmﬁ._w\vv = o: mn/B oﬁx_‘.....w\v (classically), (4.37q)

where we have used the explicit expression (4.6) for the densities; and therefore

for any k
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(classically) - (4.37b)

o @ =L m?i? = mnd

m ij

OccicB:anro:mna:vﬁ the transverse equation (4.27e) holds only in the limit as
1+0. [t holds in this limit since for very small k, or very large wavelength, longi-
tudinal and transverse fluctuations are indistinguishable.

Unless something unforeseen happens. Naturally, it does happen: in
superfluid helium, as well as in superconductors, there is macroscopic quantum phase

coherence, of which one consequence is the fact that longitudinal and transverse

fluctuations are distinct even at infinite wavelength, or more precisely,

B3

lim ,?u X (kw)/w = < mn (superfluid). (4.38)
k=0

The macroscopic manifestations of this property of superfluids are profound, and
chapter 10will be devoted to their discussion. For now, we return to normal fluids

where everything is nice and simple.

4.4 The Hydrodynamic Correlation Functions

We have two representations for the small amplitude relaxation problem:
the first, given by eqs. (4.16) and (4.24), is macroscopic, and valid only for small
wave vector and frequency; the second, generally given by eqgs. (3.14),
microscopically rigorous, for any k and z. Comparing the two we obtain the limit-
ing, hydrodynamic expressions for the microscopic correlation functions. The
simplest of these is the transverse momentum density correlation function x”?:,v.
From (4. 16) and (3. 14), and using the Kubo function introduced in (3.42-44), we

find
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X\\ATEV
- |— .:QE t _
Cilka) =B [ — o - , (4.39)

for Imz > 0. And taking the imaginary part ot z = w + i0, we obtain

Lyke) = lelull_ANj (4. 40)
! - . .
wot w o+ ?MJ\_.::VN

This function has, again, the familiar diffusion structure. MNote in passing that the
shear viscosity, 1, must of course be positive; eq. (4.40) proves that since
Ex\h?ev >0.

The longitudinal correlation functions follow in the same fashion. OFf

course, we do have to invert the matrix in eq. (4.24) now, but for k so small that

Aoqrwvm « &, (4.41)

that is not so fearsome. For the Kubo functions, we obtain:
< ~+:AMG‘+O e /e -1
v T p v

-1 ,3n
C_(kz) = if” n(). [
nn op'T n_u Nm - nwrm+ mNrwﬂ

C
s0- 7, (4.420)
p z+ik Oq
.
B mnc T
C (kz) = v P_, (4.42b)
aq z+ik' D
T
2
ik“D
=1_3n Yy 1 (4.42¢)
C (kz) =i Tz=) [ + 1.
! °T'p NMlnMrM+mNrJ~ﬂ N.l_ANU.H

These expressions are rigorous in the following sense: {f the Kubo functions n:?uv

are written as a sum of individual pole contributions,

w
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~1 i
- L !
O:QANV ip x:c& L >
Nlor+Mx T

the residues Z.. to order k. Note that all the non-vanishing susceptibilities ang
i 3

3 2
in k, so that e.g., xzz?v =n Twaqu + O,

From eqs. (4.42), we obtain the obsorptive parts X* (k) easily:

1 3n An<\nvv nwrbﬂ C|o<\nnv rM U.— u
=¥’ (kw) = n{=)_ [ + W
wonn ®'T ?Nlnmrmva;ErMH.vw ;,M;lrMOiN
¢ (P-Ad _AmoH
-0-2Y : «. 4
nn ?Nlnm_nmwm + Ac.rmﬁ VM 4
! rN U._.
—x" (k) = mnc T ,
® a9 P __nwi_moum
, oK D, (2= _Aw_uq
- x“ Vo= T) [ -
3 Xngke) = Tosg)l> 7 272

o irwotm e T S

After this onslaught, the reader will appreciate that density correlation mc:n.\w

do indeed have a very complicated analytic structure at hydrodynamically

and w. We have not written down correlation functions which involve the

longitudinal momentum density g, since forany A,

1
m

wx[ p(kw) =

because of particle conservation.
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Now let us try to understand what we have obtained. There are two
processes, one propagating and one diffusive. To order k, the diffusive mode
. . - - m._.ﬁ -
corresponds to fluctuations of the entropy varioble q(r,t) = e(r, 1) - — n(r,t). As
is apparent from eq. (4.44b), o local entropy fluctuation wilt spread out by o random
walk process, with diffusivity Oq = X\Eanv. Only at very low temperature,when
mvm = 0, is the diffusive mode o pure temperature fluctuation, see eq. (4.20b).

The other modes are, of course, identical with sound waves, propagatfing

1
with the Laplacean speed of sound ¢ = Alwv|v /2

. Their damping is viscous, as seen
Smn’S ping I

from eq. (4.25d), but contains a thermal admixture ~x as well. Only at very low
temperature,when nn ~c is the propagating mode @ purely mechanical density
fluctuation.

The discrepancy between the Newtonian, isothermal, speed of sound

Vf2 if2

¢, = va\wazva and the observed adiabatic one ¢ = Aw_u\w:_:vm is interesting.

N
Historically, Newton's theory,which was purely mechanical, could only be cor-
rected with the later recognition of thermal--as different from mechanical--
processes. It is the coupling of density and energy fluctuations which converts
ey foc In simple microscopic theories, such coupling is often omitted, ond the
isothermal speed of sound obtained. As an interesting exercise, the reader may
amuse himself by repeating the calculation which led us to eq. (2. 107), applying
the same reasoning to the particle density instead of the magnetization. He will
find the dispersion relation v = N k + O?NY high-frequency sound is isothermal.

The contrast in complexity between, say, xﬂ.

and X° is striking. The
n t
transverse momentum density is conserved, and not coupled to any other conserved
quantity. This fact results in its simple diffusion structure. The density variable and

its correlation function are complicated by two features: First, its current, the

longitudinal momentum density, is itself conserved; because of this, a density

4.5 Light Scattering 79

fluctuation can "overshoot" and come to equilibrium in an oscillatory (propagating)
rather than a diffusive fashion. And second, the density is coupled to yet another
conserved variable, the energy density.

The last term in (4.44a) is of only minor importance as far as light
scattering experiments are concemed, and it is often omitted. However, in order
for vﬂ:?@v to satisfy the f-sum rule (3.34), and therefore to be in accord with
momentum conservation, this term is necessary. In addition, the hydrodynamic
expressions (4.44) exhaust all the thermodynamic sum rules (4.27). This is no sur-
prise; our derivation guarantees that these sum rules are obeyed, to order k. How-
ever, none of the higher sum rules, such as ._,vma, wa\m can be fulfilled. This is in
direct parallel to our discussion in section 2. 10; the hydrodynamic correlation
functions are rigorous at small k and i, but they fall off too slowly at large

frequency.

4.5 Light Scattering

Eq. (4.440) is an old and famous result which hos been first derived by
Landau and Placzek (1934). lts experimental importance is, of course, the fact

that X* (kw), or rather
nn

m::?co = MJQrmlveva %MJA_AEV .Uwrm,_. xw:?ev\e , (4.46)

is what is measured in (many) light scattering experiments, see eq. (4.3). (With

w of order ck where ¢ =~ Sw nsul_ say and k ~ 5# n_.:|_~ m:ﬁumu:&mv.;

= 2/Bw

for reachable temperatures.) Indeed, since k nwrm&:mo\wv is maximally k o~
max
4

N_J: ~10 “em, k is much smaller than the inverse mean free path in liquids and

9 -1

in all but very dilute goses. wis also small, of order 10"s  or less, so that our

hydrodynamic theory should be perfectly appropriate. And light scattering experi-
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ments produce a wealth of information.

To see this, consider fig. 4.3 which gives the spectrum in some detail.

S(kw)
1
Brillouin peak
Rayleigh peak

area ratio:

2 ol ~Tk2
Dk w\wunv\n<|d

mmm. 4.3 —> W

The most immediate quantities to obtain are the speed of sound, from the position of

the Brillovin line, the sound attenuation constant T from its width, and the thermal
diffusivity from the width of the central peak. To measure the isothermal
compressibility Aw:\w_&,_. or the specific heat ratio ov\n< = EnNAws\wvv._. seems to

require the sum rule (4.27a) and therefore an absolute intensity measurement. Such

measurements are difficult, and accurate knowledge of the "factors" in eq. (4.3), in
particular the polarizability contained in them, is hard to come by. Fortunately,

relative intensity measurements suffice to obtain ¢ /c since the ratio {called the

p' v
Landau-Placzek ratio) of the areas under half the Rayleigh peak and one Britlouin
c
peak is Nv, - 1. The reader will convince himself of this fact from eq. (4.44q) or,
v

much more easily, by looking at the residues in eq. (4.42a). In summary then, one

obtains from Brillouin and Rayleigh scattering these quantities:

o

c
P. (%P ). D, =—n
MU. ¢ A ti O AA.A.J

4
omn ﬂlB:nvh D&!AMj+mv\33 :

Note, however, what these experiments involve. The frequency

1

Quite a harvest.

shifts w, of order ck, are extremely small, < _ow s which is to be noa_uo_.mm to

15 -1 .. . . . .
~ 10 3 s for the frequency of the incident light. This requires light sources
which are extremely monochromatic; lasers, in other words. It also requires very

accurate measurements of frequency shifts which is accomplished by self-beating

4.5 Light Scattering .

chnigues, specially invented to awe the theoretician.

te

Suppose we could extend these measurements of f\\_:?c; or m::?_&v to

Through X-ray and neutron scattering, and through the compyig

arbitrary k and v,
studies of molecular dynamics which are o theoretician's experiment (see the brief

review of Berne and Forster, 1971), one can go at least part of the way. What e

would we get? Well, knowing the particle mass m we could, even from the hyd

dynamic spectrum, obtain the mass density n because of the f-sum rule

.M.n_he\ﬂve X (kw) = rw?\av. Moreover, we can obtain the static structure
nn

factor S(k) = m::?huov since

S0y = kgl JI X (w)/o

where we have taken a classical system. 1f we know the interaction potential vid

this determines the pressure and the energy. Namely, from the egs. (4.6), we fi

thot

e = .wu:r .—+H :Mrﬂm.«. v{r) g(r) -

B 2

._ N_al 1
p = arw._.t.ma jdrrv (ry olr) »

where g(r) is the pair correlation function,

2Ry = (D -1 6T
ofp
= DM + % |&|r1wl wmrﬂwl.‘\uﬁm?vlsu , g.mu,

@ ”,_

From ¢ in particular, we could obtain the specific heat, 3

o:m<\?vn% .

mnc = (3¢/3T) . A theoretician should therefore calculate x”:i or better th
v n

”

“  since its transverse part X

momentum density correlation function xm g determit
i
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the shear viscosity 1. From xm g (kw:) he wouldgetallthe thermoedynamic and hydro~-
!

dynamic parameters in a classical system, and most of them in a quantum system.

Let us mention, finally, the special features that appear when the liquid
is near its critical point where va\w:v._. +0. There are three effects. First, the
total light scattering intensity becomes enormous because of the thermodynamic sum
rule (4.27a). This is the phenomenon of critical opalescence. Second, while at low

temperatures the Brillovin peaks are much more prominent than the central peak

c
since n_u ~ ¢, near the critical point the Landau-Placzek ratio .n|_w - 1 becomes
v
very large since
_ T ,3p2 23n
n_u v oo S:N Awl.U: Awlnv,_. Bt (4.52)

Therefore, most of the intensity near the critical point is in the central peak.

The entropy fluctuates wildly while the more mechanical sound waves are essentially
unaffected which is physically as one should expect. Third, even though the total
Rayleigh intensity increases, its spectral width becomes very narrow since D_ =

T

x\_.:_._n«u and o_u *co. This is the phenomenon of critical slowing down already
encountered in section 2. 10, ~o|m degrees away from the critical point, you can,
ofter each change of temperature, go to the movies while the system stowly comes
to equilibrium,

As explained in section 2. 10, the transport coefficient, which is here ,
is determined by local, rapid fluctuations and should be insensitive to the large-
scale qmm:d:mm_,:ma that goes on at the critical point. This argument, implicit in
the early theory by Van Hove (1954), is qualitatively borne out: x\n_nv -+ @ at ,_‘n.
More recently, however, it has been found that x becomes weakly singular as well,
The mwile:B_ and :;mo.:w..mno_ situation in critical phenomena is reviewed in

the book by Stanley (1971). This has been field of continued intensive activity

w
(5]

4.6 Kubo Expressions for the Transport Coefficients

since Wilson's (1971) renormalization group ideas appeared; another book would

already be necessary to describe it. (It is being written: Ma, 1975).

4.6 Kubo Expressions for the Transport Coefficients

From the results we have obtained, eqs. (4.44), we can extract the
transport coefficients by performing appropriate limits. The limits involved are
those for small k and « where the hydrodynamic theory becomes rigorous. The Kubo-
type relations which we obtain are therefore mx.oQ expressions, relating macro-
scopic measurements (of M, » etc.) to the underlying microscopic structure.

from eq. (4.40), we obtain the shear viscosity as

n = lim [ lim PN X, (kw)J - (4.530)
w=0 k-0 k

The longitudinal viscosity follows similarly from (4. 44q) as

23
4 T .omw . W 4.53b)
=1+ = lim[lim (kw)]= lim [lim X (kw), (4.
3 0 ka0 KE w0 k20 k2 %
22 . 2.0, . . 4.45). And
k"X, (kw) from particle conservation, see eq. (4. ).

since m e x:seﬁcv =
finally, the entropy correlation function (4.44b) gives the heat conductivity,
xT = dim [lim ! (k)] . (4.53c)
w0 k=0 k-
Thus all three transport coefficients involved in the hydrodynamics of a
normal liquid are given by expressions of the same structure we clready encoun-

tered in eq. (2.57), namely

Ao = lim [lim .e.N. Kyglkw)] (4.54)

AB a0 k=0 k
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for the transport coefficient y>w associated with the conserved variables A, B. As

it happens, the normal liquid has only diagonal \'s. y>w would appear in constitu=

tive relations in the form

ARG = hag TOBE. (4.55)
where Bb is the thermodynamic force conjugate to the variable 6(A):
bp/n, Bb_= 6T/T etc., as we will see more systematically later; see also
Martin (1965). The current densities are defined by
- A~
w» Alr,t) + qm: (r.,t) =0 and wme‘ t) + q_ ? t) = (4.56)

Note that x>me£3 x¢>?¢_ ) if A and B have the same signature under time

reversal ond parity. Then

(4.57)

which are the famous Onsager relations.

If we use the conservation laws (4.56) and the fluctuation-dissipation

theorem (3.38), we can express the transport coefficients in terms of current

correlations, as we did in eq. (2.290). Generally, we obtain from (4.54)

: e
hyg = lim Tim Nﬂ.t %& [dt A E N, 5D.0 ] 458
w-0 k=0

4+ =+ .
where :\n k- is the longitudinal component of the current density. (There is

no need to subtract the constant terms A_>v ( _wv as in (3.37) since their Fourier

transform is ~ 6(w) and does not contribute to the limit as w=0.) This procedure,

E)

and a pinch of rotational symmetry, gives the hydrodynamic transport coefficients

the invariant form

4.6 Kubo Expressions for the Transport Coefficients

#«T=lim lim 6T

w-0 k-0 B -o

k k. k.k. 8
A0 +p o) + Cgl = fim i .%l
l k k w=0 k=0
k k. . .
x .W,: -7 4 js?c;mss\o:v. (4.5%

4 .
These results make it evident that not only #, 1 and w.3+ {, but also C are posit§

Pretty expressions, aren't they? They invite a few comments of a general nature

Consider eq. {4.58), expressing a transport coefficient in terms of

These currents (i.e., T.., wn ) are not,

current densities of conserved variables. .
g

in general, themselves conserved. Consequently, fluctuations of the total curre

A AR . _ - . .- .
7w = %a: {r,t) will decay within a finite, microscopic time, as explained i

section 2.1. In the absence of fong-ranged correlations, the correlation functi

in (4.58) will therefore be different from zero, effectively, only over some fini

N
range of r and t. There is thus no convergence problem with the integral

1 @ -+ LA B .-
s T %& (& {0 5, @0 - G T @.

What we have just said is that the

limit (4.54) will, in general, be finite if A and B are conserved but m> and mw

and a finite transport coefficient results.

are not.

-
Now the longitudinal momentum density mhA?& is the current of the

-+ .
conserved mass density mn(r,t). However, g, obeys itself a continuity equat

-+
with the current Togt taking k=kZ. According to the argument given above,
4

zz-component of (4,59b) which gives Fn+ ¢, should thus converge, and mo__o

to (4.53b) this means that for small but finite ®

the equations backwards
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. -4, . -
lim(k—+0) k XJJ?EV must be finite. Consequently, lim(k=0) k 2 st?‘_;v vanishes,
and therefore

1 . . r._k
Yo T ey T ) = 0 (4.61)

By the same token,

A= n = lim Tlim 2 ¥ (ke)] = 0. (4.62
x40 k-0 rw n V
These cocfficienis would appear in constitutive relations in the form already given
in eqs. (4.11). We have now given the answer promised there. Since we omitted
the coefficients An and V:n from the outset, it is hardly startling that our
expressions (4.44) are in agreement with eqs. (4.61) and (4. 62).

It is apparent from (4.61) and (4.62) that

N . 1
lim — X" (kw) = lim ’ k),
ka0 k2 % 7 X, gian() (463
whatever \. |f we choose A = (e+p)/n and remember that 8q + EXP6n = 6 €,
n

¢q. (4.19), we Ffind that the Kubo expression for the heat conductivity can also be

writien in terms of the energy-energy correlation function,

AT = lim [lim 25X (kw)] i 4.64
0 k=0 k2 ©° (4-64

instead of eq. (4.53c). This fact, a consequence as we saw of momentum
conservation, is given a thorough analysis by Kadanoff and Martin (1963, p. 458)
which we urge our reader to look up, even if it means that he might become aware

of just how much we have pilferaged from this fundamental paper.
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4.7 Free Particle Behavior

The expressions for correlation functionswhich we have obtained in the

last few sections, are asymptotically rigorous. They hold in the hydrodynamic

regime when the system, asa result of many collisions, has reached local equilib-

rium. In terms of frequency and wave vector, .rmv\ro_mirm:rhAA do:mﬁ_qAA“
where L is the mean free path of a particle, and 7 the mean collision time. In a
dense liquid, this region is large: the mean free path is of the order of the atomic
force range, a few Angstroms maybe, and the collision time, by the dimensional
argument that led to (2.12), is also very small except at the lowest. temperatures
where most liquids freeze. In a gas, the range of validity of the hydrodynomic
expressions shrinks as L and 7 are much larger than in a liquid.

At the extreme other end is the simple gas of non-interacting point
particles. It may be worthwhile to write down a few expressions for this simple
system for comparison. The free classical gas is particularly simple. Since the

equations of motion are ._‘oncv = .NQAOV + AWQ\BY and MOQV = maﬁov for the a~th

particle, one shows easily that

1, w 2
o "3
X () = JT7T—"p ) e 2ok (4.650)
mv " o
and
1, w2
A
XM?EV = J1/2 BJAUF_MVm ° ' (4.65b)
o

1

2 is the thermal velocity. The corresponding expressions for the

where vy © (mP)
non-interacting Fermi gas are somewhat more complicated, and shall not be given
here {see, for example, Noziéres 1964).

It is interesting, though not too significant, that the transport coef-

ficients vanish. For example, the Kubo expressions (4.58) and egs. (4.65) give
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2
n=0 and (=0 since lim K myo\x

k=0
conductivity # vanishes. Operationally, of course, transport coefficients cannot

=0 for a > 0; similarly, the heat

even be defined for a gas of non~interacting particles. A measurement of the heat
conductivity, for example, is only possible if we can apply, quasi-statically, a

temperature gradient and maintain it while we measure the heat current, However,
only for a system with a finite mean free path can a temperature gradient be main~
tained quasi-statically. A free gas would "run away", .o:m the standard measure-
ments of transport coefficients cannot be performed. Still, it may be satisfying for

some that in this case the Kubo expressions give the most sensible result: zero.

4.8 Sum Rule Calculations

In this section, we will attempt to extend our z.wuc:? eqs. {4.40) and
(4.44), from the collision-dominated regime of hydrodynamics to larger frequency
and wavenumber. The purpose of this enterprise is twofold. Those rapid micro-
scopic processes which decay over short times,of the order of the collision time T,
are contained in egs. (4.40) and (4.44) in a summary fashion; they determine the
numerical values of the transport coefficients. If one wants to calculate these
coefficients, one has to obtain more information about high frequency processes.
Moreover, their spectrum con be obtained directly in some cases, for example
by neutron scattering.

Now we can obtain at least some information about the short time
behavior of correlation functions from their frequency moments. In sections 2.9 and
3.4 we showed how sum rules can be calculated, in principle and sometimes in
practice. Let us consider the transverse momentum density correlation function,

xﬂ?sv. According to eq. (3.33), its moments,
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W) = 1 opdw 2 X (kr) e, (4.66)

mn s

are determined in terms of multiple commutators (Poisson brackets classically) with
the Hamiltonian. For a classical system with the Hamiltonian (4.5), one obtains

(Forster, Martin, and Yip 1968)
B (o7 () = 17 + B [df g(r)(1-cosF-T) 3 [F-(&- 9 TIv(),  (4.67)
Bom’ Cw(0)) -

344 3np [d7 g(r) * -2 @y

- 4 2

+ sin k- ._w_”dw..% : «ku@“ «v< + .udwlmﬁrnomuw. Nvovy - Ap v <ku M

1 22p 209, 49, oA, ?
+ B [t [ &:L?X&F 1 -2cosk-T}

x (3992 - - k-3 v v ), (4.68)

Ao
where k = k/k. These expressions are frightening, and higher order moments would

become more horrible yet. They have been given here partly to demonstrate that
fact. Still, the two sum rules given are integrals that can be evaluated :c3oqmnn__H_
if the interparticle potential v(r) is known, and in addition two stetic correlation
functions: the fomous pair correlation function g(r), already introduced in (4.51), ./‘

which gives the probability of finding a particle at point T if we know that there is3

one at the origin; and the triplet correlation function which is defined by

;wmumh; S TRT oL W TN Tl O (4.69)
oy

Information about these functions can be obtained from the numerical computer

calculations of molecular dynamics. (For a recent review, see e.g. Berne and
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Forster 1971). In these studies, the most frequently used potential is the Lennard-

Jones (6-12) potential

vy = Amzmvs;mvﬁ : (4.70)

which is appropriate for the noble gases. For argon, for example, ¢= 120°K and
0=3.4 4. For this system therefore, it is feasible to compute the sum rules (4.67)
and (4.68). Numerical data for Aﬁwv and A;“Nv\ near k = O are given in Forster

et al. (1968), for a range of densities and temperatures. So let us now consider the

moments AEWV and AEWV as known. What do we do with them?

4.8.1. High Frequency Shear Waves

The answer is contained in the work we did in sections 2. 10 and 2. T1.
The hydrodynamic expression for XMA_»E? eq. (4.40), is not compatible with the sum
rules; it has to be generalized. Now the proof of eq. (2.94), given earlier for the
magnetic correlation function, applies to xﬂ?ev as well, In other words, in terms
of a real function Oﬂ (kw) which is positive, even in ', and has the complex Hilbert
:n:m—..m_._j

D/(kw)
_ rdw t
O(kz) = fom —m (4.7

we can always write the rigorous dispersion relation

1

| mml Q:
C(kz) = \ 1:3
Y D,(kz)

which is the complete analogue of (2.94). Comparison with eq. (4.39) shows that
{4.72) can be understood as a genealization of the hydrodynamic result, to account

for a frequency and wave number dependent viscosity
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nikz) = mn O%_ANV - (4.73)

Eq. (4.73) has therefore been called the basic equation of " Generalized Hydro-
dynamics”, for the transverse case.

Let us first jump from extremely low to asymptotically high frequencies.
We noted in section 2. 10 that to accommodate finite sum rules for xﬂ?%v\ the
function Uh?:g has to have finite frequency moments. And using our earlier

method, expansion in terms of 1/z, we find that its zeroth moment is given by

2 R L 2 474
O»BATV = LWﬂUaArhv = ,:A_Avv\r . B A .7 v
. . i 2 .
For very high frequencies therefore where O%Nv =—c, o we obtain from (4.72)
the asymptotic result
mNmu_:‘_:
= 4.75
Clka) = 55 : “.79)
z- -k el (k)
too

Again, as in (2.107), we find reactive behavior at high frequency. There are

shear waves, with a speed which at small k is obtained from (4.67) in the form

tao dr

[ee]
B2 @ = 1420 p far o) 21420 (4.76)
0

This result has first been obtained by Zwanzig and Mountain (1965) who identified
the quantity 08 = Bsnwaon as the high-frequency shear modulus. 1t describes

the initial elastic response of the fluid to a suddenly applied shear force. Indeed,
since the microscopic expressions for the energy density € and the pressure p, nomely

eqs. (4.49,50), are similor to (4.76), one can, for the case of the (6-12) potential

(4.70),express G__ in terms of ¢ and p. The result,

Mo MA
|| +|.| A.wv
G % srm_ 3p 5 € . A v
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has been discussed by Zwanzig and Mountain in numerical detail. A similar and
instructive quantum=-mechanical calculation which is applicable to liquid Helium,

has been given by Puff (1965).

4.8.2 Interpolation Ansatz

We now have a low-frequency result in (4.39) and a high-frequency
result in (4.75). Can we close the gap? Naturally, one must not be immodest:
only a detailed microscopic calculation could accomplish this goal. In a rare gas,
such a calculation might be feasible if laborious since the Boltzmann equation gives
o rather detailed picture of the dynamics. (For related work, see e.g., Mazenko,
Wei, and Yip 1972, and references given there.) For a liquid, the problem is
infinitely more difficult (see Rice and Gray 1965). On the other hand, the gap
between "low" and "high" frequencies in a simple liquid is not all that large since
the mean free path and the collision time are small. We can therefore hope for good
luck with a relatively simple, and more or less ad hoc, interpolation model.

Again, we utilize the general representation (4.72), in the spirit of
our work in section 2, 10, We do not know the function D’(ku}), of course, but we
can hope to get by with a simple ansatz. The ansatz function D’ (k) should be even
and positive, of course. It also should fall off rapidly at large w so that its

frequency moments exist. Indeed, if we choose a D’(kw) which fulfils the sum rule

(4.74) (ond therefore (4.67)), we will guarantee the correct behavior (4.75) at
high frequencies. At smail wand k, Dh (kw) should be a smooth function of these

variables, essentially a constant. The representation (4.72) would then reproduce

the correct hydrodynamic behavior in this region, with the shear viscosity given by

1= mn O%o.ov = ..\W.B: UMAPOV. (4.78)

4.8 Sum Rute Calculations :

And so let us be courageous, and try a Gaussian ansatz function

2 ,
U*\Arev = 2 nwe?v 7(k) mlﬁel_&v /m ) “.79) 4

which is in accord with all the restrictions given above. If we use (4. 78) to

determine the parameter (k) at small k in terms of the experimental viscosity, i,

use

A o= mn nwsAsiS = G0 (4.80)

of success. ;

Of course, one must not take the detailed frequency dependence of

Oheﬁ.v too seriously. A much more modest, and very successful, use of this _u_‘onmu.

is to obtain o semi-microscopic, parameter-free calculation of the viscosity itself g

We have at our avail another bit of knowledge, namely the as yet unused sum ruli
3

(4.68). It translates into a second sum rule for UM (kw), namely

9 Dke) = (W) K2oilel . (4.81);

o

4 -2 4
Computing this integral from (4.79), we can express 7(k) in terms of Aeurvvr 2

)
and <2 _(K) both of which have finite limits os k0. Eq. (4.80) therefore gives]

the final result

] ]
W = (gn)’ lim S0 :ews;-wu 2 @. 82}
k-0 |

This simple calculation is remarkably successful. Numerical results, and a

comparison with experimental viscosity data, are given in Forster et al. (1968). %

3

Methods similar fo those used in this section can be applied to a wi€




?

4 . The Normal Fluid

variety of fluctuation phenomena. Closely related techniques have been used, for
example, by Chung and Yip (1969) to discuss density fluctuations in the neutron

scattering region, as well as several other fluctuations in simple liquids.

CHAPTER 5

THE MEMORY FUNCTION FORMALISM

One of the most fundamental notions in the theory of interacting many-
particle systems is that (almost) nothing that is physically interesting, can be cal-
culated rigorously from First principles. Once this has been recognized -~ sometime
within the first year of graduate study -~ it becomes of crucial importance for those
not inclined to give up to hide their partial ignorance of complicated details away
in places where it is least likely to cause harm. Abstract and general results or
formulations are useful if they indicate how this should be done, if they suggest
which objects of the theory, while unknown in detail, are likely to be insensitive to
many of the complicated and uncalculable features of the dynamics; if they indicate,
in other words, where one may approximate, parametrize, or fudge with relative
impunity.

A prime example of this kind of general result is the dispersion relation
(2. 101) for the spin density correlation function, or its fluid mechanics equivalent
(4.72). By itself it is general, rigorous -- and almost empty. If however as we
believe, and as we will explain in section 5.4 below, there is an indication that
the memory function D(kz) contains, in its spectrum, neither very low nor extremely
high frequencies, the dispersion relation becomes extremely useful: even though
the function D(kz) contains nearly the full horrendous complexity of the many-~body

problem, at low frequency and wave vector it varies slowly, and can be replaced

by a constant: the simple and experimentally interesting hydrodynamic expressions




