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In the current density functional theory of linear and nonlinear time-dependent phenomena, the
treatment of exchange and correlation beyond the level of the adiabatic local density approximation
is shown to lead to the appearance of viscoelastic stresses in the electron fluid. Complex and
frequency-dependent viscosity/elasticity coefficients are microscopically derived and expressed in
terms of properties of the homogeneous electron gas. As a first consequence of this formalism, we
provide an explicit formula for the linewidths of collective excitations in electronic systems.
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Time-dependent density functional theory (TDFT) [1]
is frequently invoked as a tool for studying the dynamics
of many-particle systems. This theory maps the difficult
problem of interacting electrons in a time-dependent ex-
ternal potential V (~r, t) to the simpler one of noninter-
acting electrons in an effective time-dependent potential
Veff (~r, t) = V (~r, t) + vH(~r, t) + vxc(~r, t) (where vH is
the Hartree potential, and vxc is the exchange-correlation
(xc) potential) yielding the same density n(~r, t). In or-
der to obtain a practical computational scheme, the xc
potential is usually approximated as a function of the
instantaneous local density,

vALDA
xc (n(~r, t)) =

(

dǫxc(n)

dn

)

n=n(~r,t)

, (1)

where ǫxc(n) is the xc energy density of the homogeneous
electron gas of density n. This scheme is known as the
“adiabatic local density approximation” (ALDA) [2]. Be-
cause the conditions of validity of the ALDA (slowly vary-
ing density and potential in time as well as in space) are
seldom met in experiments, a few attempts have been
made [3,4] to improve upon the ALDA. The objective of
these attempts was to obtain approximations for the xc
potential which would still be local in space, but not in
time. All these approximations were found to suffer from
inconsistencies, such as the failure to satisfy the so called
“harmonic potential theorem” (HPT) [4–6], or other ba-
sic symmetries. Only recently, it has become clear that
the root of these difficulties lies in the fact that the xc
potential in TDFT is an intrinsically nonlocal functional
of the density, that is, a functional that does not admit
a gradient expansion [7,8].

Fortunately, a local gradient expansion is still possible
if the theory is formulated in terms of the current den-

sity. This was shown in ref. [7] by Vignale and Kohn,
who developed the time-dependent current density func-
tional approach to the linear response theory, and gave an

explicit expression for the linearized xc vector potential
~axc(~r, ω) for a system of slowly varying density, subject
to a spatially slowly varying external vector potential at
a finite frequency ω. Their expression becomes exact in
the limit k ≪ ω/vF , kF and q ≪ ω/vF , kF , where k−1

and q−1 are the characteristic length scales for variation
of the external potential and equilibrium density, respec-
tively, and kF and vF are the local Fermi momentum
and velocity. However, the final expression for ~axc(~r, ω)
in ref. [7] is rather formidable, and its physical meaning
is far from transparent. Furthermore, it is restricted to
the linear response regime. It is the purpose of this paper
to overcome these limitations.

In the following we derive a consistent local theory
of the nonlinear dynamical response of a quantum elec-
tronic system of “slowly varying density”, in the sense
specified above. The effect of the xc potential beyond
the ALDA will be shown to be analogous to the intro-
duction of viscoelastic stresses in classical fluid dynamics
and elasticity theory [9]. The generalized viscosity coef-
ficients (or, equivalently, the generalized bulk and shear
moduli) are complex and frequency-dependent functions
of the density, and can be calculated in terms of the lo-
cal field factors of the uniform electron gas [10,11]. An
important consequence of the xc viscosity is to provide a
damping mechanism for long-lived collective excitations
which cannot effectively decay into particle-hole pairs -
the only form of damping allowed within the ALDA [12].

We begin by recasting the linear response theory of
[7,8] in a form that is suitable for the nonlinear gener-
alization. Let n0(~r) be the ground-state density of the
system, and let χKS,ij(~r, ~r

′, ω) be the current-current re-
sponse function of a system of noninteracting electrons
whose ground-state density is also n0(~r). The system is
perturbed by a weak external vector potential ~a1(~r, t) =
~a1(~r, ω)e−iωt [13], and we want to calculate the amplitude
of the current-density response~j1(~r, t) = ~j1(~r, ω)e−iωt, to
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first order in ~a1. The answer is

j1,i(~r, ω) =

∫

∑

j

χKS,ij(~r, ~r
′, ω) [a1,j(~r

′, ω)

+aH1,j(~r
′, ω) + axc1,j(~r

′, ω)] d~r′, (2)

where ~aH1 is the first-order change in the Hartree po-
tential (written in vector-potential form [13]), and ~axc1

is the first-order xc vector potential, which contains the
many-body effects. Note that ~axc1 in general has both
longitudinal and transverse components, even when ~a1

is purely longitudinal. The local-density approximation
for ~axc1 was first derived in ref. [7], eq. (19). We have
found that that complicated formula can be written in a
physically transparent form. To this end, we introduce
the xc “electric field” ~Exc1(~r, ω) ≡ iω

c ~axc1(~r, ω). Then

− eExc1,i(~r, ω) = −~∇iv
ALDA
xc1 (~r, ω)

+
1

n0(~r)

∑

j

∂σxc,ij(~r, ω)

∂rj
(3)

(e is the absolute value of the electron charge, and c is
the speed of light). The first term is the linearization of
the ALDA expression (1), and the dynamical correction
is the divergence of the visco-elastic stress tensor

σxc,ij = η̃xc

(

∂ui

∂rj
+
∂uj

∂ri
−

2

3
~∇ · ~uδij

)

+ ζ̃xc
~∇ · ~uδij .

(4)

Here ~u(~r, ω) ≡ ~j1(~r, ω)/n0(~r) is the velocity field, and
η̃xc(ω, n0(~r)) and ζ̃xc(ω, n0(~r)) are complex viscosity co-
efficients. They are related to the homogeneous electron
gas functions fh

xc,L(ω, n) and fh
xc,T (ω, n) (L for longitu-

dinal, T for transverse) used in ref. [7] as follows:

ζ̃xc(ω, n) = −
n2

iω

[

fh
xc,L −

4

3
fh

xc,T −
d2ǫxc(n)

dn2

]

(5)

and

η̃xc(ω, n) = −
n2

iω
fh

xc,T . (6)

The functions fh
xc,L(T )(ω, n) are defined in terms of

the dynamical local field factors GL(T )(k, ω) [14] as

fh
xc,L(T )(ω, n) ≡ − limk→0 4πe2GL(T )(k, ω)/k2. They

have been recently calculated, within a mode-coupling
approximation scheme, at zero temperature, by Conti
et al. [10,11]. Because the local field factors are singu-
lar for small k and ω, it is important to keep track of
the order of the limits k → 0 and ω → 0. The fh

xc’s
are defined by taking the limit k → 0 first. Thus the
limit for ω → 0 of fh

xc,L(ω, n) differs from the famil-

iar limk→0 4πe2GL(k, 0)/k2 = −d2ǫxc(n)/dn2. However,
rigorous low frequency limits [15] can be obtained [16]

from an analysis of the transport equation in the Landau
theory of Fermi liquids [17]. We find

lim
ω→0

Re

[

fh
xc,L(ω, n) −

4

3
fh

xc,T (ω, n) −
d2ǫxc(n)

dn2

]

= 0 (7)

and

lim
ω→0

Refh
xc,T (ω, n) =

2EF

5n

F2/5 − F1/3

1 + F1/3
, (8)

where F0, F1... are the usual dimensionless Landau pa-
rameters of the homogeneous electron gas [17]. As for
the imaginary parts, one finds Imfh

xc,L(T ) ∼ −c0,L(T )ω
for ω → 0, where the approximate values of the coeffi-
cients c0,L(T ) are tabulated in ref. [11].

From these results, one concludes that the real parts
of the xc viscosity coefficients (which agree with the or-
dinary notion of fluid viscosities) have finite values in
the limit ω → 0. The imaginary parts of the viscos-
ity coefficients are better understood in terms of bulk
and shear moduli of an isotropic elastic medium, Kdyn

xc

and µdyn
xc . According to elasticity theory [9], we define

Kdyn
xc (ω) = ωImζ̃xc and µdyn

xc (ω) = ωImη̃xc. The su-
perscript dyn is a reminder that these are dynamical

contributions to be added to the usual static ones, al-
ready present in the ALDA. The static elastic constants
are Kstat

xc = n2d2ǫxc(n)/dn2 and µstat
xc = 0 respectively.

Equations (7,8) show that for ω → 0Kdyn
xc vanishes, while

µdyn
xc has a finite value. A similar state of affairs holds

for the noninteracting kinetic contributions to the bulk
and shear moduli: Kdyn

kin = 0 and µdyn
kin = p(n), where

p(n) is the noninteracting Fermi pressure (see below),
and Kstat

kin = ndp(n)/dn, µstat
kin = 0. The general conclu-

sion is that dynamical (post-ALDA) effects do not mod-
ify the bulk modulus, but they cause the appearance of
a nonvanishing shear modulus and viscosity.

Equations (3) and (4) clearly display the basic symme-
tries which were used in the derivation of [7,8]. First of
all, the fact that the force exerted by the xc potential per
unit volume −en0(~r) ~Exc1(~r, ω)−n1(~r, ω)~∇vxc0(~r) can be
written as the divergence of a symmetric rank 2 local
tensor guarantees that the net force and the net torque
acting on a volume element of the fluid have no contribu-
tion from the volume element itself (Newton’s third law).
Therefore, the HPT, the “zero force” and “zero-torque”
theorems of [7,8] are manifestly satisfied. (Note that the

force exerted by the xc “magnetic field” ~Bxc = ~∇×~axc is
legitimately disregarded in this argument, being of higher
order in the gradient expansion [see also below]. Besides,
it is rigorously absent in the linear response theory, if
there is no static magnetic field).

Thus far, we have used the condition of slow density
variation (k, q ≪ ω/vF ) only in approximating the xc
vector potential. If this condition is met in the physical
system under study, we can also use it to approximate
the Kohn-Sham (KS) response function, χKS,ij(~r, ~r

′, ω).
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Then eq. (2) for the current reduces (after considerable
algebraic manipulation) to a linearized Navier-Stokes
equation [9] with complex and frequency-dependent vis-
cosity coefficients:

− imωj1,i(~r, ω) = n0(~r)
[

−iω
e

c
ai(~r, ω)

−∇i

(

p1(n)

n0
+ vH1(~r, ω) + vALDA

xc1 (~r, ω)

)]

+
∑

j

∂σij(~r, ω)

∂rj
. (9)

Here p1(n) = p(n) − p(n0) is the first order change in
the pressure of the noninteracting electron fluid (p(n) =
(3π2)2/3h̄2n5/3/5m), and vH1, v

ALDA
xc1 are the first-order

changes in the Hartree potential and ALDA xc potential.
The full stress tensor σij is defined as in eq. (4), with the
viscosity coefficient η̃xc replaced by η̃xc −p(n0)/iω, while
ζ̃xc remains unchanged.

If, on the other hand, the conditions k, q ≪ ω/vF are
not well satisfied by our system, then it is better to revert
to the original KS formulation (2), which treats the non-
interacting response exactly. The use of the local density
approximation (3) for the xc potential becomes then an
uncontrolled approximation, but it may still work well in
practice. In particular, we note that eq. (2) allows for the
phenomenon of Landau damping (damping of collective
modes by single electron-hole pairs), while eq. (9) does
not.

Let us now discuss the generalization of the formalism
to the nonlinear response regime. In this case, one must
solve the full time-dependent KS equations for the KS
orbitals ψα(~r, t)

[

ih̄
∂

∂t
−

1

2m

(

−ih̄~∇ +
e

c
~a(~r, t) +

e

c
~axc(~r, t)

)2

−v0(~r) − vH(r, t)

]

ψα(~r, t) = 0, (10)

starting, for example, with the static KS orbitals cor-
responding to the external potential v0(~r) at the initial
time. The density and the current density are computed
from the KS orbitals according to the usual rules [3]. The
form of the nonlinear xc vector potential is dictated by
the following requirements: (i) the xc force density

Fxc,i = n
e

c

[

(

∂

∂t
+ ~u · ~∇

)

axc,i −
∑

k

uk∇iaxc,k

]

(11)

must be the divergence of a local symmetric rank two
stress tensor (Newton’s third law). ‘Locality’ here means

that σxc,ij(~r, t) is a function of n(~R, t′), ~j(~R, t′) and their

spatial derivatives, where t′ < t, and ~R(t′|~r, t) is the posi-
tion at time t′ of the fluid element which evolves into ~r at
time t [18]. (ii) Under transformation to an accelerated
frame of reference [5] with origin at ~x(t), the stress tensor

σxc,ij(~r, t) becomes σ′

xc,ij(~r, t) = σxc,ij(~r + ~x(t), t). (iii)
Equation (10) must reduce to the linear response theory
in the limit of small external perturbations, and to the
nonlinear Navier-Stokes equation in the limit of slowly
varying (in time) perturbation [19].

To within the accuracy of our approximation, i.e., to

second order in the spatial derivatives, the above require-
ments uniquely determine the form of ~axc:

e

c

∂axc,i(~r, t)

∂t
= −∇iv

ALDA
xc (~r, t)+

1

n(~r, t)

∑

j

∂σxc,ij(~r, t)

∂rj
,

(12)

where

σij(~r, t)=

∫ t

−∞

[

η̃(n(~r, t), t− t′)

(

∂ui(~r, t
′)

∂rj
+
∂uj(~r, t

′)

∂ri

−
2

3
~∇ · ~u(~r, t′)δij

)

+ζ̃(n(~r, t), t− t′)~∇ · ~u(~r, t′)δij

]

dt′, (13)

η̃(n, t− t′) ≡
∫

η̃(n, ω) exp(−iω(t− t′))dω/2π, and simi-

larly for ζ̃. Here n(~r, t) and ~u(~r, t) are the time-dependent
values of the density and velocity field.

Note that our formula for ~axc is still linear in ~u(~r, t).
This happens because, due to the constraint (ii) of gen-
eralized galilean invariance, the velocity must enter the
stress tensor through its spatial derivatives, which are as-
sumed to be small, even if the velocity itself is not small.
Terms of higher order in the velocity would necessarily be
of higher order in the gradient expansion. For the same
reason, one can ignore the velocity-dependent terms in
the xc force (eq. (11)), and the difference between ~r and

the “retarded position” ~R of the fluid element. Similarly,
the apparent ambiguity of whether the density entering
the viscosity coefficients in eq. (13) should be evaluated
at time t or at some earlier time t′, is resolved by noting
that the difference n(~r, t′)−n(~r, t) =

∫ t

t′
~∇·~j(~r, τ)dτ gen-

erates a higher order gradient correction, provided that
the range of times which contribute significantly to the
integral in eq. (13) is essentially finite.

The simple form of eq. (12) is justified by our basic
assumption that the gradients of the density and veloc-
ity fields be small. By using the full expression (11) for
the electromagnetic force on the left hand side of eq. (12),

and by replacing (~r, t′) → (~R(t′|~r, t), t′) on the right hand
side of eq. (13), the approximation can be systematically
improved, so as to satisfy the local “zero force” theorem
to all orders in the gradients. A straightforward gener-
alization allows one to construct an approximation that
also satisfies the local “zero torque” theorem.

Finally, we wish to comment on the condition k, q ≪
ω/vF which defines the limit of validity of our approxi-
mate treatment of ~axc. This restriction is forced on us
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by the analytic structure of the functions fh
xcL(T )(k, ω)

which are singular along the line ω = kvF , thus limiting
the radius of convergence of the small-k expansion. The
condition is reasonably well satisfied at the characteristic
frequencies of collective excitations, but it becomes in-
creasingly restrictive as we lower the frequency, entering
the domain of single electron-hole excitations. Because
the region ω/kvF → 0 is not analytically connected to the
region k → 0, it seems unlikely that any local density ap-
proximation can provide a physically sound description of
dynamical exchange and correlation in the electron-hole
excitation region.

In conclusion, we have developed a consistent and
physically transparent formulation of nonlinear time-
dependent density functional theory beyond the ALDA.
The main physical manifestation of dynamical exchange
and correlation effects is the appearance of viscosity
and dynamical shear coefficients in the electron fluid.
This formulation allows a first-principle calculation of the
linewidth of high-frequency collective excitations, which
are not Landau-damped, and would therefore appear as
sharp δ-functions within the ALDA. As a first appli-
cation, we have obtained a compact expression for the
linewidth Γ of such collective modes, to first order in the
viscosity coefficients. The result is

Γ =

∣

∣

∣

∣

∣

Re
∑

i,k

∫

d~ru∗i (~r, ω)∇kσxc,ik(~r, ω)

m
∫

d~rn0(~r)|~u(~r, ω)|2

∣

∣

∣

∣

∣

, (14)

where ~u(~r) is the velocity field of the collective mode cal-
culated within the ALDA, and n0(~r) is the equilibrium
density. Detailed applications of this formula will be re-
ported elsewhere.
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