Mathematical
Introduction

1-1 BASIC DEFINITIONS

The properties of a quantum mechanical system composed of many
identical particles are most conveniently described in terms of the
second-quantized, Heisenberg representation, particle-creation, and
annihilation operators. The creation operator, p1(r,t), when acting
to the right on a state of the system, adds a particle to the state at
the space-time point r,t; the annihilation operator y(r,t), the adjoint .
of the creation operator, acting tu the right, removes a particle from

the state at the point r,t.
The macroscopic operators of direct physical interest can all be

expressed in terms of products of a few ’s and y{’s. For example,
the density of particles at the point r,t is
n(r,t) = yt(r,t)y(r,t) (1-1a)

Since the act of removing and then immediately replacing a particle
at r,t measures the density of particles at that point, the operator

for the total number of particles is

N(t) = [dryt(r,t)y(r,t) (1-1b)

Similarly, the total energy of a system of particles of mass m in-
teracting through an instantaneous two-body potential v(r) is given by

. vyt(r,t)s vy(r,t)
H(t)= | dr =
(t)= [ e p_—

+1/2 [dr dr'yte,t)yt,t)v (e - ')y, t)ylr,t)

In general we shall take ki = 1.
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Since [H(t),H(t)] =
time., Also the H
[H,N(t)] = 0, and t
of the time indep

0, we see that the Hamiltonian is independent of
amiltonian does not change the number of particles
herefore N(t) is also independent of time. Because
endence of H, (1-3) may be integrated in the form

X(t) = et x ()~ 1HE (1-4)
Pgrticles may be classified into one of two types: Fermi-Dirac par-
ticles, a‘lso called fermions, which obey the exclusion principle, and
Bose-Einstein particles, or bosons, which do not. The wave fur;ction
of any state of a collection of bosons must be a symmetric function
of the: coordinates of the particles, whereas, for fermions, the wave
function must be antisymmetric. One of the main advantages of the
second-quantization formalism is that these symmetry require-
ments are very simply represented in the equal-time commutation

relations of the creation and annihilation operators. These com-
mutation relations are

g(r,t)y(rit) = ylr,t)ylr,t) =0
Hr,t)ypt(r,t) = g1, t) yilr,t)= 0 (1-5)
¥(r,t)ytlr,t) = yi(e,t)y(r,t) = 6(r - r’)

where the upper sign refers to Bose-Einstein particles and the lower
szign refers to Fermi-Dirac particles. We see, for fermions, that
¢ (r,t) = 0. This is an expression of the exclusion prineciple in space
—it is impossible to find two identical fermions at the same point in
space and time.

We shall be interested in describing the behavior of many-particle
systems at finite temperature. For a system in thermodynamic
equilibrium the expectation value of any operator X may be com-

g‘\;xted by using the grand-canonical ensemble of statistical mechanics.
us

D (i1x]1) e P~ 1Ny

i
< =
x> Ry (1-6a)
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Here | 1) represents a state of the system, normalized to unity, with
energy Ej and number of particles Nj. The sum runs over all states
of the system with all possible numbers of particles. A more com-

pact way of writing the average (1-6a) is

b [e—ﬁ(H - uN)x]

e i [P V] (1-60)

where tr denotes the trace.

The thermodynamic state of the system is now defined by the pa-
rameters u, the chemical potential, and B, the inverse temperature
measured in energy units, i.e., 8 = 1/kgT, where kg is Boltzmann’s
constant. Zero temperature, or g — =, describes the ground state
of the system.

The Green’s functions, which shall form the base of our discussion
of many-particle systems, are thermodynamic averages of products
of the operators (1) and y(1’). (We use the abbreviated notation 1
to mean r;t; and 1’ to mean r,+ty,, etc.) The one-particle Green’s
function is defined by

G(1,1°) = (1/1) ( T(p(1)y1(1’))) (1-7a)
while the two-particle Green’s function is defined by
G2(12,1'27) = (1/i%) (T (p(1)y(2) g1 (2") (1’ ) (1-7b)

In these Green’s functions, T represents the Wick ti~e-ordering
operation. When applied to a product of operators it arranges them
in chronological order witl. t2ie earliest time appearing on the right
and the latest on the left. For bosons, this is the full effect of T.
For fermions, however, it is convenient to define T to include an
extra factor, + 1, depending on whether the resulting time-ordered
product is an even or odd permutation of the original order. Thus,
for example,

T((1)y1(17) = p(1)yt(1’)
= 1¢T(l')¢(l) for t; < t,,

for t1 > t1’

As in (1-5), the upper sign refers to bosons and the lower to fer-
mions. We shall use this sign convention throughout these lectures.
The one-particle Green’s function G(1,1’) has a direct physical
interpretation. It describes the propagation of disturbances in which
a single particle is either added to or removed from the many-par-

ticle equilibrium system. For example, when t; > t;, the creation
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adding a particle at

G (1,1) = (1/i) (1) yt(17))

< 1-8
G (1) =+ (1/i)(y1(17)y(1)) =g
The notation > and < is intended as a reminder that f

G =G>, while for t; < ts, G = G<. e Bk

1-2 THE BOUNDARY CONDITION

The time-development operator e-itH bears a strong formal sim-
ilarity to the weighting factor e-PH that oceurs in the grand-canoni-
cal average. Indeed for t = —iB, the two are the same. We can ex-
ploit this mathematical similarity to discover identities obeyed by
the Green’s functions. In particular we shall now derive a funda-
mental relation between G> and G<.

Our argument is based on the fact that the time dependence of y
and yt, given by (1-4), may be used to define the creation and anni-
hilation operators and therefore G> and G<, for complex values of
their time arguments. In fact, the function G>, which we may write
as

G”(1,1) =
-3(H-puN) eu’

Hl(rho) e-i(tl—t“)Hﬂ(Py,O) &

-it,'H]
itr [e'B(H'“N)]

tr [e

is an analytic function for complex values of the time arguments in

" the region 0 > Im(t, - t;) > - 8. This analyticity follows directly

from the assumption that the e™ H-pN) factor is sufficient to guar-
antee the absolute convergence of the trace for real time. Similarly
G<(1,1’) is an analytic function in the region 0< Im(t, - t,r) < B.

To derive the relation between G” and G< we notice that the
expression

G<(l,l') I =3 1 tr [e-ﬁ(H-uN) wT(rlr’t11)¢(r"0)]
t;=0 i tr [;_ﬁ(ﬂ_uN)]

may be rearranged, using the «yclic invariance of the trace
(tr AB = tr BA), to become

< ’
G (1)1 _g

Ry o2 - w0 [ UM (0 o) AH-1N) sttent))
T tr [e-ﬂ(H—uN)]

=+ (1/1)(e? (H-pN) 4(r1,0) oPH-uN) st ta))
Because y(r;,0) removes a particle, we have
¥(ry,0)(N) = £(N + 1)y(r,,0)
where f(N) is any function of the number operator N. In particular,
e PEN i 0) ePHN = PH y(r,,0) e’?’f‘("“) yis, )1 ex
and from (1-7) it follows that
ePH y(r,,0) e = ytr,,~B)
Thus
« (/) (ylrs,—18)y1(1)) P

_— e"“cm,v)it i (1-9)
i

[
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This relationship is crucial to all our Green’s function analysis.
Notice that (1-9) follows directly from the cyclic invariance of

the trace and the structure of the time dependence of ¢(1). Since G:

is also defined as u trace, we can go through an entirely similar

analysis for it, splitting it into several non-time-ordered expectation



values of y’ »
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different pOSS'bly .1fferent analytic pieces, corresponding to all the
We employ lthe ?me orderings of its four time variables.

(1-9) for Gy, We coniowing simple device to exhibit a relation like

interval ider the time variable to be restricted to the
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fu(: ctit::xr; (f:) l‘41) defl.nes the field operators and therefore the Green’s
e functimag?nary times. To complete the definition of the
& Biisinor s 1?1?12 lsnyrt::ti;lti;lf domain, we extend the definition of

. 0 mean ““i x t’’ orderi

. . er when the
i;mfhsea‘x"fa:::‘z?’gx‘nz{ry. The further down the imagin:rgy axis a time
in,the Wpoines Olt<1?£ <Tgen the Green’s functions are well defined
b < B. For example, the one-particle Green’s

G(1,1)=G”(1,1") for it, > ity
=G~ (1,19 for it, < it,,
For 0 < ity < B, we have
G(1,1/ = G°
(1,17) lg,=0 = G (1’1’)’t,=0 (since 0 = it, < ity for all t;+)

and

G(1,1’ =G> ’
(1, “t1=—i/3 G>(1,1') 't1=—iﬁ (sli;)(t:e)ﬁ = it; > it for
a 1/

Therefore (1-9) can be restated as a relation be
; tween th
G(1,1’) at the boundaries of the imaginary time domain: © values of

’ - ﬁp‘ ’
G, _o =+ "GILI) |, _ .0 (1-10)

Moreover, we can see immediately that G; on th ;
i e imaginary ti
axis obeys exactly this same boundary condition. ginaxy. thme

G.(12,1°2 = LefH 7
”t,=0 te Gz(12,12)|t1=_iﬁ (1-11a)
and also

G2(12,1'27) ity g P -
lgy=o = *e G212 | __ (1-11b)

'These boundary conditions on G and G; will be used over and over
again in the subsequent analysis.

It is only at a later stage that we shall need the imaginary-time
Green’s functions. Now we shall restrict our attention to the one-
particle function, for which (1-9) is a suitable representation of the
boundary condition.

Because of the translational and rotational invariance of the

Hamiltonian (1-2) in space and its translational invariance in time,
nd t, — t,». When we want to

G> and G< depend only on [T, —Ty/| 2

emphasize that these functions depend only on the difference vari-
ables, we shall write them as G>(<)(1-1") or as G>(<(|r,—r,«|,t,—t;).
In terms of the difference variables, (1-9) is

G‘(r,t)=¢e6“G>(r, t - iB)

We now introduce the Fourier transforms of G> and G<, defined by

G’(p,w)=ifdr f dat e PeTHiot o>y

G<(p,G)) =é:ifdl‘ f_'w dt e-ip-l"l'iwt G<(r,t)

(1-12)

Note the explicit factors of i and +1i that we have included here to
make G”(p,w) and G*(p,») real nonnegative quantities. Equation (1-9)

then becomes the simple relationship
Gipw) =ePEH ) 6 (p,) (1-13)

It is useful to introduce the ‘‘spectral function’’ A(p,w) defined by

Alpw) = G>(p,w) ¥ G*(p,w) (1-14)

The boundary condition on G can then be represented by writing
G>(pw) = [12 1)) Alpw)
(1-15)
G(pw) = f(wA(p,w)
where

fw) = 1/[e3(°’ =#) g4

The term f can be recognized zs the average occupation number in
the grand-canonical ensemble of a mode with energy w.

(1-16)




[The st m
ate
o diagonalizede?; is(,e rfl:)ore precisely, that when the Hamiltonian cdan
the form z:A EA'I'AT ;p/\ then szT is a creation opera-

tor for 3
ode of the t
unig o system with energy €, The average occupation
€ mode A is (y. ty, ) =1f(e_).]
From the definiti G i
efinitions of G> and G< it follows that
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F 41(0,0)y(r,t)])

dv ~ipe
22 A = [ar e T ([40,0051(0,0) 7 410,0)5(e,0)])

= fdr 6(r)=1 (1-17)

w :
the trei ‘::iirll use the relations that we have just derived to find G for
case of free particles, for which the Hamiltonian is

Ho:fdr Vytlr,t)-vylr,t)
2m

We notice that
< eiwt

:vherc; Q is the volumg of the system and y(p,t) is the spatial Fourier
ransform of y(r,t). Since y(p,0) removes a free particle with mo-
mentum p, it must remove energy p?/2m from the system. Thus

b 3

y(p,t) = eimzﬁ(p,o) e 1At e’i(pz/zm)tzb(p,o)
so that
G* (p,w) = (27/92)6(w - p*/2m) ( y(p,0)y(p,0))

Jence A(p,w) is proportional to §(w — p?

) p°/2m), and the constant of
roportionality is determined from the sum rule (1-
*hus, for free particles, (17} bo besti.

Alp,w) = As(p,w) = 27 6(w - p*/2m) (1-18)

G ()= [ i e \p'/2mt 12 ('/2m)
(1-19)

Gs (r,t) = (%?)ﬁ fpme=lprizt _f(lzi/ 2m)

Since y1(p,0)3(p,0) is the operator representing the density of
particles with momentum p, it follows that for free particles the

average number of particles with momentum p is

il = (zpt(p,os)zzp(p,o)) = f(p?/2m)

1
) (1-20)
BEP/2m-p) Ly

This is a result familiar from elementary statistical mechanics.



.Information Contained
in G”>and G¢

2-1 DYNAMICAL INFORMATION

Now
that we have set down the preliminaries, we shall try to gain ’

sor;e insight into G> and G<,
he Fourier transform of the field operator y(r,t), given by

p,w) = [ar fat e P T 4 4

ei:: :;1 g;p:r;tg:swgzgz a;mihilates a particle with momentum p and
7 ,w) can be identified as the ave
particles in the system with momentum p and energl"yai)e- densily of

G<(p,w) = (n(p,w)) = Alp,w)f (W) (2-1)

The interpretation of this result is evident, A
:(w)citi tiufa average occupation number of a ’modse“:veit?la ::egglff’ tol::at’
; ,I:ty :hi z:ction A(p,w) is a weighting function with total welgh't
: whenever it is nonzero defines the spectrum of
energies w, for a particle with momentum p in the fnediun: ponslble
To check this result, we may note that the densliy of pax:tlcles
’

(nr,t)) =gt (r,thy(r,t)) = + 1G<(rt,rt)

= [ _dp
f 77 P O (v (2-2)

O'I;h;: :lalys ;l::’t the total density of particles is equal to the integral
over wp ” w of the density of particles with momentum p and
gy w. Since (n(r,t)) is independent of r and t, we shall repre-

sent it simply by the symbol n,
10

As an example, for a system of free particles,

Ao(p,w) = 27 b(w — p*/2m)

Hence Ao(p,w) is nonvaniski g only when w = p?/2m. This says that
the only possible energy value for a free particle with momentum p
is p?/2m. The total density of particles with momentum p is

P

[ T P
oo = [ 2 o) = 1( ) = gy @Y

To see what happens in the classical limit, we explicitly write

the factors of B in the expression for the density:

n= f?z—rqr%F eB(p’/zrln—u) 21

In order that at a fixed temperature the density not diverge as h—0,
the factor e-BH# must become very large. Thus the classical limit 18
given by gp — — ®. We may then neglect the ¥ 1 in the denominator
of (2-3), so that the momentum distribution becomes the famillar
Maxwell-Boltzmann distribution

(n(p)) = (const) e_'ﬁ(P’/ 2m)

(2-4)

Equation (2-4) indicates that g — — is also the low-density limit.
On the other hand, for a highly degenerate (i.e., high-denslty)
Fermi gas, fu becomes very large and positive. r>fining the Fermi

momentum pg by K = p;/2m, we find
(n(p)) =0 for p > oy

=1 for p < pg

All states with momentum p < pg are filled, and all states with p > Pt

are empty.

For a Bose system, p cannot become positive, but {nstead it ap-
proaches zero as the density increases. Then the total density of
particles with nonzero momentum cannot become arbitrarily large,

put it is Instead limited by

d 1 1 (2m)°” f x* dx
—7?-7-——)-—‘ = —— ..__—--——2
7P eﬁ 2m -1 2 \ B d X -1
In order to reach a higher density, the system puts a macroscopic



E;‘l’i’;;e;‘f t:; Particles into Fhe mode p = 0. The mathematical pos's'i.J *
Phenomenols occurrence is the fact Fhat at u =0, f(0)=«. This

the BlaL Tll, called the Bose-Einstein condensation, is reflected in
s cal world as the phase transition of He" to the superfluid

be qw';f: ;he;e is an interaction between the particles, A(p,w) will not
COlllputeg(;e>(elta functnor_].. To.see the fietailed structure of A, let us
& (o p,w) by explicitly introducing sums over states. Then

‘G”(p,w) = Alp,w)|1 t [(w)|

O i t i
4 / at 88 5 B N Ciluple ™ ytp) 1)
PR 2 i tr O‘H}_{‘HN

1 -B(E;: — uN;
o i?;‘e BE=END | | ut)15) 2

2 27 6(w + E; ~ EJ)
tl‘ [e'B(H_u-N)]

. It is ?lear then that the values of w for which A(p,w) is nonvanish-
mg'are just the possible energy differences which result from adding
a single particle of momentum p to the system. Almost always the
e'nergy spectrum of the system is sufficiently complex so that A(p,w)
finally appears to have no delta functions in it but is instead a con-
tinuous function of w. However, there are often sharp peaks in A.
These sharp peaks represent coherent and long-lived excitations
which behave in many ways like free or weakly interacting particles.
These excitations are usually called quasi-particles.

We can notice from (2-5) that G”(p,w) is proportional to the av-
eraged transition probability for processes in which an extra par-
ticle with momentum p, when added to the system, increases the
energy of the system by w. This transition probability measures the
density of states available for an added particle. Therefore, G”(p,w)
is the density of states available for the addition of an extra particle
with momentum p and energy w.

Similarly GZ(p,w) is proportional to the averaged transition prob-
ability for processes involving the removal of a particle with mo-
mentum p, and leading to a decrease of the energy of the system
by w. Since the transition probability.for the removal of a particle
is just 2 measure of the -“2ncity of particles, we again see that
Gz(p,w) is the density of particles with momentum p and energy w.
The interpretation of G” as a density of states and G as a density
of particles will be used many times in our further work.

(2-5)

In terms of these two transition probabilities, the boundary con-
dition (1-12) is

T.P. (adding pw) _ A(l1# (W) _ _Blw~-p) (2-6)
T.P. (removing p,w) Al  ° )

This statement, called the ‘‘detailed balancing condition,” is a direct
consequence of the use of an equilibrium ensemble.

9-2 STATISTICAL MECHANICAL INFORMATION CONTAINED IN G

In addition to the detailed dynamical information, G contains all
possible information about the statistical mechanics of the system.

We have already seen how we can write the expectation value of
the density of particles in terms of G<. Similarly we can express
the total energy, i.e., che expectation value of the Hamiltonian (1-2),
in terms of G<. To do this we must make use of the equations of mo-
tion for y and yt. Using the equation of motion (1-3) and the com-

mutation relations, (1-5), we see that

(1 o 4 v2)¢(r,t)= [ dr vir - F)ytir,t)yE,tylr,t) (2-Ta)

ot 2m
and

(—i S+ ;’—m’) pHet)

= ptlent) [dar va - Tyt E e )pEe) (2-7b)
Therefore it follows that
) )
i | [-S=125) BHE,E) (r,t)]
1/4 [ [( = at)wt AL
T vt o]
=1/4fdl‘[(+m+425 e, Y, i
(2-8)

+1/2 [ dr dr 1t yt(E,tvie - T)y(r,t)ylr,t)

i i lus all the
The right side of (2-8) is half the kinetic energy plus all |
potentigl energy. When we add the other half of the kinetic en-

ergy we find that



l! - . ! ) VPH V'V' ' e 'm
(H) l/4fdr[(tat ’m'*'."n')

x (w(r'.t')q'(r.t))]
r'ep,t'=t

o 2 0 vy
2 ‘ f(lr [(l 5{ - 1{ a—p + -"h-"-)G‘(rt,r't’)]

dp d !
2 f (257, 2‘: iy ,(21.’,,,{2!')__) f(0)A(p,w) (2-9)

;\(/)here Q 18 the volume of the system. Equation (2-9) is very useful
T evaluating ground-state energles, specific heats, etc,

All statistical-mechanical informatio
é n can be obtain
grand partition function S

2g = tr [o =41 (2-100)

We shall now show how we can find Z, from G, Statistical mechanics

tells us that in the limit of lar
ge volume the grand na
is related to the pressure P by g ek onneliog

rep t'st

5 LBPQ
Zg=e (2-10b)
Differentiating th i A
ey e ing the logarithm of Zg with respect to u at fixed 8 and ,
o e

so that the density of particles is given by

_oP

837

o (2-11)

This is a very commonly used thermodynamic identity. Since we

know that, in the limit u — —w, the density and th
e press
to zero, we can integrate (2~1’l) to obtalny d ESERLE go

(i N, ti -~ P,
S L% )

2 o
P, ) -f‘: du’ nlp,u’) (2-12)

Consequently i, for a glven ¥, we know the Green' s function 46 &
function of 4, we can calculate P and hence the partition function,

Unfortunately, the integral in (2-12) can rarely be performed ex-
plicitly, One of the few cases for which a moderately simple result
emerges is for a free gas, Here

d 1

n(3,u) = ](2},’), LT (2-133)
and hence

P(B,u) =7 ‘13 (;%, In {1: o Plw*/2m) '“l} (2-13b)

In the classical limit, gu — = ». Then we see that

dp -pl(p*/2m)- 4]
2P

n=
and

- a=1 dp '6[(pz/2m) "pl
P-B 12_1?7’ e

sothat P=g"'n= nKgT. This is the well-known equation of state of
an ideal gas.

There is, however, another method of constructing the grand par-
tition function, which is very useful in practice. Let us write a cou-
pling constant A in front of the potential energy term in (1-2). Then

H=Ho +AV
where H, is the kinetic energy and V is the potential energy operator,
v =1/2 [ dr dr pi(e)pt@)v(lr - T DyE)y(r)

When we differentiate In Zg with respect to A, at fixed 8, u, and Q,
we find

3 § 1 2 -ﬁ(HoﬂV-uN)] o 2-14

(We do not have to worry about the noncommutability of V with



Ho - u.N because of the cyclic invariance of the trace.) ‘Integrating
both sides of (2-14) with respect to A, from A =0 to A = 1, we find

1
dx
(nzg], _,-Timzgl _,= ~3£ = AV (2-15)

Now ()‘V>,\ is the expectation value of the potential energy, for cou-

pling strength A. It may be expressed in term
: s of G< by subtracti
from (2-8) half the kinetic energy. Then : e

_ dp dw w - (p°
vy =q [ B 0w ©72m) 4 @) (2-16)

so that

BPQ =[In zg])\=1

1
g dA
[in Zgl, _o — 80 fo 'y

dp dw w— (p?/2
s / e M A, (pw) () (2-17)

The co is j
nstant term, [In Zg])\:O’ is just BPQ for free particles, which
we have evaluated in (2-13b).

The Hartree
and Hartree-Fock
Approximations

3-1 EQUATIONS OF MOTION

We have seen that the one-particle Green’s function contains very
useful dynamic and thermodynamic information. However, to extract
this information we must first develop techniques for determining G.

Our methods will be based on the equation of motion satisfied by
the one-particle Green’s function. This equation of m.tion is de-
rived from the equation of motion (2-7a) for y(1). From (2-7a) it
follows that

/1)< T[(i 2. %:ll)mmu')])
=+ (1/i) [ dra v(r,— ;) (TR gp2) T2y 1)) |t3=t1
=21 [ dra vir - 1) G212 |y (3-1)

Here, the notation 2* is intended to serve as a reminder that the
time argument of :pT(Z) must be chosen to be infinitesimally larger
than the time arguments of the y’s in order that the time ordering
in G, reproduce the order of factors that appears in (2-7a). [Since
Y’s commute (or anticommute) at equal times, we do not have to
worry about the time ordering of (1) and 3(2).]

To convert (3-1) into an equation for G we must take the time
derivatives outside the T-ordering symbol. The spatial derivatives
commute with the time-ordering operation, but the time derivative
does not. Since T changes the time ordering when t, = ty/, the
difference

2 (rpmprany - (r(F s DY)
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must be' proportional to a delta function of t; — tys . Tpe constant of
Proportionality is the discontinuity of ( T(y(1)yt(1’))) as t, passes
through tl’, i.e.,

o (Temytan - (1(& st 1)

= 5(ty — tyr) ( (1) yt(17) # 1(17)y(1)) )
=6(t, - ty7)6(r, ~ry) =6(1-1')
In this way we find that (3-1) becomes an equation of motion for G:

oy
(e o

=6(1— 1)1 [ dr, v(r, - r2) G(12,1°2%)] _ (3-2a)
In a similar fashion we can also write an equation of motion for
G; involving Gs, one for G; involving G4, and so on. As we shall have
no need for these equations we shall not write them down.
Starting from the equation of motion of y7(1’), we also derive the

adjoint equation of motion,

(«i g +ﬁ) G(1,17)

9ty  2m

=6(1-1’) 2 i [ dr; G(127;1°2) v(r: — Ty’) (3-2b)

Equations (3-2) are equally valid for the real-time and the imaginary-
time Green’s functions. The only difference between the two cases is

that for imaginary times one has to interpret the delta function in
time as being defined with respect to integrations along the imagi-
nary time axis.

Equations (3-2a) and (3-2b) each determine G in terms of Gz. It
is in general impossible to know G; exactly. We shall find G by
m~l:ing approximati-is for G, in the equations of motion (3-2).

However, even if G; were precisely known, (3-2) would not be suf-
ficient to determine G unambiguously. These equations are first-
order differential equations in time, and thus a single supplementary
boundary condition is required to fix their solution precisely. The
necessary boundary condition is, of course, condition (1-10):

G 1)1, o =+ PPa 100, _ (1-10)

A very natural representation of G which automatically takes the

. quasi-periodic boundary condition into account is to express G as a

Fourier series, which we write in momentum space as
6o, t=t)=-L D e 2602 rdSHP  @.3)
p, L~ ‘_iBy p,y Osit’<B
where z) = (mv/—iB)+ p. The suin is taken to run over all even inte-

gers for Bose statistics and over all odd integers for Fermi statis-
tics in order to reproduce correctly the % in the boundary condition,

The equation of motion directly determines the Fourier coeffi-
cient G[(rv/-iB) + u]. However we want to know the spectral weight
function A. To relate G to A we invert the Fourier series (3-3):

'iB : _t
Glp,z,) = fo gt LT/ 1R+ E-)g0 ¢ gy

This integral must be independent of t’ and is most simply evaluated

by taking t’ = 0. Then
do -iwt Alp,w)

Gp,t)=G,t)= | 5 = =
® 27i - Blw - p)
and we find
=° -ip ; _ )
dw i[(nv/-iB) + 1 - wit A(Eiw .
G(p,zl;)— ‘/:” m L dt [e 1¥e—8w-p.
g g‘_’:’ A(p,w) (3_4)
" J 21 zy~w
Thus, the Fourier coefficient is just the analytic function
(3-5)

Alp,
Glp,z) = —%,"—' z(_“:,)

=2y= i for finding A from

evaluated at z = z,, = (av/~i8) + . The procedure

the Fourier coefficients is then very simple. One merely contillues

the Fourier coefficients—a function definecz on tht:)poin';‘.;s1 z -ique
-i - 1c function for all (nonreal) z. e un

(nv/-iB) + p—to an analyt ] =, TUL

continuation which has no essential singularity 'at z
tion (3-5). Then, Alp,») is given by the discontinuity of G(p,z) across

the real axis, i.e.,

Alp,w) = i[G(p, w + 1€) — Glp, w — € ) (3-6)
since

1 __-p -~ 7iblw - W)

w-w + i€ w -



Uit P denotes the principal value integral and € is an infinitesimal

Positive number.

| .}mf three concepts--equations of motion, boundary conditions, and
halytic continuations--form the mathematical basis of all our tech-

niques for determining the Green's functions.

3-2 FREE PARTICLES

Let us il}ustrate these methods by considering some very simple
:l‘p\proxlm-atwns for G. The most trivial example is that of free par-
icles. Since v = 0, the equation of motion (3-2a) is simply

. @ 1
(1 ot zlm) G(1L,1")=68(1- 1) (3-7)

We multiply this equation by

exp [— ipe(r,-ry)+ i(_l;; + u) (t, - tv}]

integrate over all r, and all t, in the interval 0 to —if. Then (3-7)
becomes an equation for the Fourier coefficient,

Glp,z,) = z, = (o7/2m) (3-8a)

The analytic continuation of this formula is

1
G(p,z) = ;—--(—sz (3-8b)

This analytic continuation involves nothing more than replacing
(wv/-ipB) + i by the general complex variable z. The analytic con-
tinuations we shall perform will never be more complicated than
this. We see directly from (3-6) and (3-8b) that

Aolp,w) = 276[w — (p?/2m))
This by-now-familiar result expresses the fact that a free par-

ticle with momentum p can only have energy p?/2m. Once we
know A we know G” and G*<,

3-3 THE HARTREE APPROXIMATION

To determine G when v # 0, we must approximate the G, that ap-
pears in (3-2a). Approximations to G; can be physically motivated
by the propagator interpretation of G(1,1’) and G;(12;1’2’).

The one-particle Green’s function, G(1,1’), represents the propa-
gation of a particle added to the medium at 1’ and removed at 1. We
can represent this pictorially by a line going from 1’ to 1:

G(1,1) =1’ > 1

Notice that this line represents propagation through the medium, and
not free-particle propagation. Sin.ilarly,
Iy 2~ »— 1

G,(12;1'2%) = G:

9’ > > 2

describes the propagation of two particles added to the medium at 1’
and 2’ and removed at 1 and 2. In general, the motion of the particles
is correlated because the added particles interact with each other,
either directly or through the intermediary of the other particles in
the system.

However, as a first approximation, we may neglect this correla-
tion and assume that the added particles propagate through the me-
dium completely independently of each other. That is, we use the

approximation

17— > 1
Go(12;172") = G,
21 - 3o 2
1’ —_———— 1
- =G(1,1)G(2,2")  (3-9)
9 I 2

If we then substitute (3-9) into the equation of motion (3-2a), we
obtain the approximate equation for G:

2
[1 aaT + 2v—i’—;l ¥ if dr; v(r. = rz)G(2,2+)] G(l’l')
1

3 , Vi . '
= [1 t -2-% - [ dr. v(ry - 12) (n(rz),]G(l,l )
=6(1- 1) (3-10)



Equation (3-10) is a Green’s function statement of the Well-knbwn
Hartree approximation. It is the same equation as we would have
obtained had we considered a set of independent particles moving
through the potential field

U(ry) = [ dry vir,~ r2) (nlra)) (3-11)

The potential field (3-11), called the self-consistent Hartree field, is
the average field generated by all the other particles in the system.
Thus we see that the Hartree approximation describes the many-
particle system as a set of independent particles, each particle,
however, moving through the average field produced by all the
particles.

For a translationally invariant system, (3-10) is quite trivial.
Since (n(r,)) is independent of the position r,, the average potential
is also constant. Letting v = f dr v(r), we may write

U =nv

'I"hen, by just the same procedure as in the free-particle case, we
find from (3-10) the equation for the Fourier coefficient:

[z, - (®*/2m) - nv] Glp,z,)=1

The continuation from the z, to all complex z of the Fourier coeffi-
cient is, therefore,

_ 1
Sloa) s e oy (3-12)

so that in the Hartree approximation
A(p,w) = 276[w — (p*/2m) - nv) (3-13)

Thus the particles move as free particles, except that they each
have the added energy nv.

To complete the solution to the Hartree approximation, we must
solve for the density of particles in terms of u, or vice versa, This
can be computed from (2-2);

n =4 iG(rt,rt) = (22:7, g;-;’ Alp ) f(w) (3-14)

which for the Hartree approximation becomes

= d @ 1
n f 2n)P 2n e[}{(p’/zm)-q, nv — ] + (3-15)

Similariy we find the energy per unit volume from (2-9):
(H) _ o (2’_ n_V) 1
Q 27 \2m | 2 eB[(pz/2m)+nv-p.] %1

- 2 dp p’/2m
- (1/2)‘" v+ f(21r)’ eB[(p’/2m)+ v — “] 1 (3-16)

Finally we may obtain the equation of state of a gas in the Hartree
approximation. We do this for simplicity in the low-density limit.
We start out by considering the effect of changing the chemical po-
tential by an infinitesimal amount du at fixed temperature. Then
the familiar thermodynamic identity,

dpzndu (3'17)

gives the change in the pressure. When (3-15) is taken in the low-
density limit (8u — —=), it beccmes

_ Blp-nv) [ dp _-B(*/2m)
n=e [W e

Hence at fixed 8,
dn = gn{dy — v dn)
Thus from (3-17),
dP =(1/B)dn + vn dn = KgT dn + (1/2)v d(n®)
Since at n = 0 the pressure vanishes, we find
P- (1/2)n’v = nKgT : (3-18)
This is in the form of a van der Waals equation,
(P — an®)(® — Rexe) = nKgT

but without the volume-exclusion effect. For an interaction whose
long-range part is attractive, v is negative, and quite reasonably the
pressure is reduced from its free-particle value,

We could never hope to Yi~cover a volume-exclusion term from
the Hartree approximation. Such a term arises because the particles
can never penetrate each others’ hard cores. However in deriving
the Hartree approximation we have said that the particles move



independently, and therefore this correlation effect has*been.cém-
pletely left out. In order to treat hard-core interactions it is neces-
sary to include in the approximation for G, the fact that the motion of
onr particle depends ~n *he detailed positions of the other particles

in the medium.
The Hartree approximation is much less trivial when the par-

ticles are sitting in an external potential U(r). The system for which
Hartree originated his approximation was that of electrons in an
atom, under the influence of the central potential of the nucleus.

The equation of motion for G in the presence of an external po-
tential is

[i 5‘:—1 + EV% - U(r,)] G(1,1°)

=8 =) e i [ vl ~ G212 |
1

and in the Hartree approximation this reduces to

2
[1667 + B _yte) — f dry vl - 1) <n(r,)>] G(1,1')
"”-

=8(1-1') (3-19)

Again this equation is the same as we would have obtained had we
considered independent particles in the effective potential field

Uess (ry)=U(r,) + f dry v(r, =1r,) (nlr;)) (3-20)

Sincc the system is Lo locger translationally invariant we cannot con-
sider (n) or Uggs to be independent of position, and the equation can-
not be diagonalized by Fourier transforming in space. It can, how-
ever, be diagonalized on the basis of normalized eigenfunctions,
¢;(r), of the effective single particle Hamiltonian, H,(r) = (-v%/2m) +

Ueﬁ(l‘):
H,(r)ei(r) = Ejp;(r) (3-21)

The procedure for solving the equation is to first take Fourier co-
efficients of the equation of motion, finding

[z, = H(r)]G(r,r\z,) = 6(r - r’) (3-22)

so that in terms of the gj,

Glr,r,2,) = 5 LilE)ei(r’)

i 2, Ej

Hence
Alr,r',w) = 217 ¢i(r) o2(r’) 6w =~ E;) (3-23)
i

We see that the single-particle Hamiltonian H, defines both the
single-particle energies and wave functions of the particles in the
system.

Once more, to complete the solution we have to compute the den-
sity, since this determines Ugff. We have

(n(r,t))=fg—‘7‘,J A(r,r,w)f(w)
=3 leilr) | £(E}) (3-24)
i

The term f(E;) gives the average occupation of the i-th single-par-
ticle level, while | @j(r) |? is obviously the probability of observing
at r a particle in the i-th level.

Notice that to determine ¢j(r) it is necessary to solve a non-
linear equation, since H,(r) itself.depends on all the y; through its
dependence on the density. The process of solving this nonlinear
equation is called obtaining 2 ‘‘self-consistent’’ Hartree solution.

3-4 THE HARTREE-FOCK APPROXIMATION

The Hartree approximation (3-9) for the two-particle Green’s
function does not take into account the identity of the particles. Since
the particles are identical, we cannot distinguish processes in which
the particle added at 1’ appears at 1 from processes in which it ap-
pears at 2. These processes contribute coherently. To include this

possibility of exchange, we can write

1 —— 1
G,(12;1727) = G
2" —>— >—2
v > 1 v 2/
- % ><
2/ > 2 1 2
= G(1,1")G(2,2") 1 G(1,2")G(2,1") (3-25)

This approximation to G, leads to the Hartree-Fock approxima-
tion. In fixing the relative signs of the two terms in (3-25) we
use the fact that G,(12;1'2') = 1 G,(21;1’2’). This symmetry can



be verified divectly from the detinition of Q,, (1-70), tu

The approximate equation for G reaulting from aubatituting (3-36)
to (3 3a) takea the form
9 "' Y ’ ‘i ’
(l il GOLE) WV drey vy 0 ) 1y) G, )'t."t‘
-31=-1) (3-20)
where
AT T = o8(r, =1, f dry \'(l“ -ry) (n(!‘,))
Giv(r, = r)G(1,2) (3-27)
LSl
again has the interpretation of an average, self-consistent potential

field through which the particles move. However, with the inclusion

of exchange, U becomes nonlocal in space,
In the case of a translationally invariant system, we can Fourier-

transform (3-26) and (3-27) in space to obtain

[s - E(p)‘] Glp, t, = t,) = 8(t, — t,7) (3-28)
and
E(p) = ‘2%1 +nv 1 (—g{—)’ v(p —p’) (n(p’)) (3-29)

where v(p) = [dr e P *y(r) is the Fourier transform of the poten-
tial v(r). Just as before,

Alp,w) = 25 6(w — E(p)) (3-30)
so that

(3-31)

1
(n(p)) = {(E(p)) = =
BE® — 4]

The Hartree-Fock single-particle energy E(p) must then be obtained
as the solution of (3-29) and (3-31).

To sum up: Both the Hartree and the Hartree-Fock approxima-
tions are derived by assuming that there is no correlation between
the motion of two particles added to the medium. Thus, these ap-
proximations describe the particles as moving independently through

an average potentiul fleld, The particles then find themselves in
portectly atable single-particle states. There 16 no possibility for
colllslons and Indeed no mechanism at all for particles moving from

one single-particle state to another,
In Chapter 4 we dedcribe a way of fntroducing the effect of colli=

slong Into our Greoen's function analysis.



col;Ii‘}}'ls result indicates a close correspondence between our Botn
Sion approximation and the results of an analvsis based on a

Boltzma i i
nn equation i i isi i
q with Born approximation collision cross sections

tion for G to derive tnis Boltzmann equation.

€ shall later use a generalization of the Born collision approxima- .

A Technique
for Deriving Green’s
Function Approximations

Up to now we have written approximations for G by relying on the
propagator interpretations of G and of the G, that appears in the
equation of motion for G. We have thus been able to write a few
simple approximations for G, in terms of the processes that we
wished to consider. However, physical intuition can take us just
so far. The use of purely imaginary times makes a direct inter-
pretation of these equations difficult. Furthermore it is hard to
find physical ways of determiuiig the numerical factors that appear
in front of the various terms in the expansion of G,. We therefore
seek a systematic way of deriving approximations for G.

As a purely formal device, we define a generalization of the one-
particle Green’s function in the imaginary time interval [0,-1p):

G(1,1%0) =% ilLS(_i%)étl%_)h (5-1)

Here T means imaginary time ordering and the operator S is given
by

-ip
S=exp[—i J; d2 U(2)n(2)] (5-2)

n(2) = y1(2)y(2) and U(2) is a function of space and times in the inter-
vall [0,-i8].

iWe may regard G(1,1;U) as a one-particle Green’s function,
written in the interaction representation, for the system developing
in imaginary time in the presence of the scalar potential U. This
potential is represented by adding a term [dr Ulr ,On(r,t) to the
Hamiltonian. In the interaction representation, all the U dependence
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One reason that the Green’s function (5-1) is convertient to Gse is
that it satisfies the same boundary condition,

G(l,l';U)|t1=0=t e#“G(l,l';U) |t1="iﬁ (5-3)

as the equilibrium Green’s function. The derivation of this boundary
condition for G(U) is essentially the same as for the equilibrium
functions. The time 0 is the earliest possible time, so that

- .1 (T[Syt(1)]y(r,,0))
G(1,1 ,U)|tl=o "+ 3 T80 1

Since the time —ip is the latest possible time,

#s -1 (y(r,—iB) T[Syt (1)])
G(1,1 'U)'t,z-iﬁ T o (T[S])¢

The cyclic invariance of the trace that defines the expectation values

then implies (5-3).
Another reason this Green’s function is convenient is that it obeys

equations of motion quite similar to those obeyed by the equilibrium
function G. These are

2
[i Eat] + 2~ uw] e, = 60 - 1)
+i [dr,v(r, - r:) G,(12,1°2*:1)) [ (5-4a)
,—t,
3‘“&. 3 v2,
[—i st ﬁ - U(l')]G(l,l’;U) =6(1-1)
#i [dr, v(r, - r) G,(127,1'2;U) - (5-4b)
where s
ror.y = (AT ISe()e(2)g1(2")gt (17)])
G = (2
2(12,1°27;U) (1) CTISh) (5-5)

We derive $§-4). in exactly the same way as the equations of motion
for the equilibrium function G(1 — 1’). The only new feature is the

appegrance of the terms UG. To see the origin of these terms
consider, for example, ’

is explicit in the S factor, a

nd the field operat i
the absence of the potEnsia] p ors are the same as in

T[Sy()]=T {exp{l f:ﬁ d2 U(2)n(2)]}

x y(1)T {exp [—i fot' d2 U(z)n(Z)]}

Then
iaitl T[Sy()] =T {exp[—i ]t';lﬁ 2 U(Z)n(z)]}

x {iaa t(ll i f dr, U(r,,t,) [y(1), n(ra,tl)]}

x T {expE _‘;iﬁ d2 U(2)n(2)]}

Since from (1-5)
['I‘(rntx): n(rg,t,)] = 8(r, — ry) p(ry,ty)

it follows that
i 5%— [T(5y(1))} = T[Si %%f—l—)] + T[Sy(1)] U(1) (5-6) -

Such a calculation is the source of the UG term in (5-4a).

So far we have only succeeded in making things more complicated.
We shall learn something by considering the change in 7‘U) resulting
from an infinitesimal change in U. We let

U(2) — U(2) + 5U(2) - (5-7)
The change in G resulting from this change in U is

5G(1,1:0) = 5 {1 (TISy(1) gt} } _1 [(T[ﬁsw(l)w(l'm

i (T[S] 1 (T[SD

_(T[88]) (T[Sy(D)yt(1)]) 5-8)
(T([s]) (T[sh ] :

When 68 appears in a time-ordered product, it can be evaluated as

55 =5 {exp[—i fo T U(2)n(2)]} =slif_iﬁ 42 5U@n(2) (5-9)



since the T's automatically provide the proper (imag!nary) tfn‘ie or-
dering. On substituting (5-9) into (5-8) we find

-ig . )
a2 {(T[S¢(1)¢t<1 )n(2)])

i
GG(I,I';U)=_[° ¥ (T[S

_(T[SgMyt(1)]) (T[Sn()])
i(T[S]) i(T[s])

} 6U(2)

-iB
= xj; d2[G,(12,1°2*;U)

—-G(1,1;U) G(2,2*;U) ) 6U(2) (5-10)

Since this calculation of §G is just a generalization of the method by
which one obtains an ordinary derivative, we cali the coefficient of
6U(2) in (5-10) the functional derivative, or variational derivative,

of 3(1,1';U) with respect to U(2). It is denoted by 5G(1,1°;U)/8U(2), ,
So that

P = 4[G,a12,1°230) - G(1,1V) 6(2,2*0)] (5-11)

We may therefore express the G, that appears in the equation of
motion (5-4) for G in terms of 6G/5U. This equation then becomes

2
v +
{I a—‘zl + Em—‘ = 10 (T)RENeE dr, v(r, — rz)[G(r,tx,r,t,;U)
5 ;
TR 1,10)=6(1 - 1’ -
The Green’s function G(U) is thus determined by a single functional
differential equation.

Unfortunately there exist no practical techniques for solving such
functional differential equations exactly. Equation (5-12) may be
used, however, to generate approximate equations for G. We shall
begin our discussion by using (5-12) to derive the beginnings of a
perturbative expansion of G(U) in a power series in v.

5-1 ORDINARY PERTURBATION THEORY

If there is no interaction between the particles, G(U) is determined
by t~e equation
[l 2 + V_f -~ U(l)]G (1,1;U) = 6(1 ~ 1) (5-13)
ot 2m 052452

1

' together with the boundary condition (5-3). The function G,(1,17;U)

may be used to convert (5-12) into an Integral equation:

-tﬁ - . = N
G(1,1;U) = G4(1,1;U) # § f di a2 G,(1,1;u)v(i - 3)
/]
x [c(é,é';u) ¥ oub( )]G(i,l';u) (5114)

We have introduced the notation
V(1= 1) = v(|r, = r;.]) 8(t, = 4,/) (5-15)

By applying [i(3/at,) + (vi/2m) = U(1)] to (5-14) one can verify that
(5-14) is a solution to (5-12). To see that it satisfies the boundary

condition (5-3), we observe that

-18 )
G(1,1;0) le,=0 = Go(1,1/;U) |t1=0+."° di Gy(1, 1001, _gee

=34 e"# [Go(l,l';U) |tl='13

-ig ) ]
;U o . eee
+ J; dl Gy(1,1 )'t,--i#
= 1 ePHG(1,10) |
’ t,=-i8

Notice that (5-14) contains time integrals from 0 to —i3. This is
the ultimate origin of the appearance of such integrals in the Born

collision approximation. '
To expand G(U) in a power series in V, we need only successively

= first-order term is ob-
iterate (5-14). To zeroth order G = G,. The
tained by substituting G = G, into the right side of (5-14). Then to

first order in V:
48 . . . &
G(1,1;U) = G4(1,1%;U) # i _[ al a2 G,(1,1;u)v( - 2)
[}
3 30.U) + —0— i1 (5-16)
x [eu2n0)+ 60(2)] Go(1,1%;0)

We then must compute (6/8U(2))G,(1,1';U). Perha;ps the simplfst
way of finding this derivative is to regard G(1,1 EU) as a ma
trix in the variables 1 and 1’. The inverse of this matrix, de-

fined by



-ig = =
f; dl G,(1,1;U) Gy(1,1;U) = 6(1 - 1’)

is, from (5-13), just

-1 2
G, (1,1;0) = [1-5‘:: + -2%)— = U(l)] 6(1-1) (5-17)

Varying both sides of the matrix equation Gy* G, = 1 with respect to
U implies

6[G5! G,] = 6G;1G, + G36G, = 0
or

GGO = _GO GGJIGO
Thus , wo =gy (5-17)

5Go(1,1’ -ip -1 .

-ip
- 5U(3) ;
L d3 Go(1,3) 775) Go(3,1")

= G,(1,2) G,(2,1) (5-18)

since 6U(3)/6U(2) = &(3 — 2). Substituting (5-18) into (5-16) we find
that to first order in V,

-8 _ _ _ o
G(1,1%;U) = G,(1,1;U) % i f dl d2 G,(1,1;u)v(i - 2)
[+]
x [G,(2,2*;U) G,(1,1;U)
£ G,(1,2*;U) G,(2,1;0)] (5-19)

We represent this pictorially as

. where the lines signify G,. When U is set equal to zero we have the

expansion of G(1 — 1’) to first order in V.
It is instructive to compare this first-order result with the
Hartree-Fock approximation, which may be written as

2 -ig
(iaitl+iv;nk)c(1~1')=a(1—1')ii£ d2v(l-2)
x [GE -2%)G(1 - 1) £ G(1 - 2*)G(2 - 1)]

Then
-l‘j . _ _ _
GO -1)=G,(1-1) i f ai &3 G(1-v(i-2)
[}

x[GE-3")G6(1-1)= G- 2YG(Z -17)]  (5-20)

The first-order solution (5-19) is equivalent to the Hartree-Fock
solution expanded to first order in V.

To obtain higher-order terms in V, we substitute (5-19) back into
(5-14), and again use (5-18). The GG term gives the second-order

contributions

@< Q@ .

&

-0-0

+ __>—n—>——= + (5-21a)
while the second-order contribution from 8G/8U is
-3 ) s
i f di d2 G,(1,1;,Uu) V(1 - 2) 300
[}
x{z1 fd§ dd G,(1,3;u) V3 -4)
x [G,(4,4*;U)G,f3 1';0)
(5-21b)

£ Go(3,4%;U) Go(3,101}
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All the terma in (8-31a) and the Cirat four terma In (6-210) arise
from an itevation of the Hartree- Fook equation, lHowever, the last
two terma do not appear in the Hartree-Fock equation, but are in-
atead the loweat-order contributiona of the colllaion terma in the
Born collision approximation, In the appendix we conalder this ex=

pansion in more detail,
One can iterate further and expand G to arbitrarily high order

in V. The general structure of G is given by drawing all topologi-

cally different connected diagrams,

We should point out that there are very few situations in which
this expansion converges rapidly, Usually the potential is suffi-~
ciently large so that the first few orders of perturbation theory give
a very poor answer. Furthermore, physical effects such as the

e'r(t =t behavior of G and the single-particle energy shift cannot
appear in finite order in this expansion. Instead, one would find

e TH-V) replaced by its power-series expansion
1-T(t=t)+(1/2)T2(t =t') + oo

which converges slowly for large time differences.

5-2 EXPANSION OF I IN V AND G,

The difficulties of the expansion of G in powers of V may be
avoided by either summing infinite classes of terms in the expan-
sion, or equivalently by expanding the self-energy Z(1,1’;U) in
terms of V. We recall that T is defined by

2 -ig o
(‘TZ*%)G(I"')'L dz@-1a6i-1)

=8(1-1') (5-22)

I the st lum cume, In b pr wnenes of 1 we dufins 7 by ihi
Bt ion

7 .
’{: dl lh‘,,“(l,’,”) S Y R B A Y R LR a7 ]

we dufine the mstein inverse of G by e sguation

W
.[ i “"'“,!;U)lﬂ"l’;”, - b1 = 1)

it 18 ¢laar that

G7N0,150) = G 0) = 2 00,0750) (5-24)

To (ind ¥ (U), we matrix muliiply (5-12) on the right by G™F, Then
p“’ . f
G™Y1,150) = G 1,10) 5 4 J: vl -2 62 )e1=1)

“I - 3 ,
-t_[ a2 di v(1~2)[-”—(5%4éjw]

x G™41,17;U) (6-24a)
80 that
Z(1,140) =21 fdi V(1 -2)G(2,2%;u)6(1 = 1)
z .= = [6G(1,1;U
+1 fdz dl V(I-Z)[—o—ﬁ‘@;—}]
(5-25a)

x G(1,1;U)
Using 86G+G™* + G6G™* = 0, we {ind
-18 - i L s
[T a [eat e dm=- [ di s iv 35

. 50(2)

x [G3¥(1,1;U0) = Z (1,1%;V)]

qB - - il“U
=G(1,1)8(2 - 1') + fo d1 G(1,1;U) £ 2as(u(z) )

Hence (5-25a) for T becomes



Z(1,150)=6(1-1)[+ i [ 42 V(1 - 2) G(2,2*;U))

+iV(1 - 1) G(1,1%;0) + i [ d1 d2 v(1 - 2)

x G(1,1;U) %ﬂ (5-25b)

This latter equation is very useful for deriving the expansion of T
in a power series in G, and V. To lowest order in v,

Z(L15U0) =1i6(1-1') [d2 V(1 - 2) G,(2,3*;U)
FIRV( =47} G5 (1:1%0) (5-26)

This is clearly just the lowest-order approximation to the Hartree-
Fock self-energy. The second-order result for T is obtained by
taking the Hartree-Fock terms in (5-25b) to first order in G, using
(5-19). The more interesting second-order terms in T result from
6Z/6U. To lowest order these terms are

+
\
\
1
'
!
I
!
’
7/
\

e e (5-27)

e -

where the lines signify G,’s. Expression (5-27) is just the lowest-
order evaluation of the collision term in the Born collision approxi-

mation self-energy.

5-3 EXPANSION OF Z IN V AND G

In the calculations in previous chapters, we have expanded ¥ in
V and G instead of V and G,. The primary reason for doing this is
that G has a simple physical interpretation, while the physical sig-
nificance of G, in an interacting system is far from clear. We shall
therefore indicate how successive iteration of (5-25b) leads to such
an expansion in G and V.

+'he Hartree appi oxiwation is derived by neglecting 6G/6U in
(5-25a). The Hartree-Fock approximation is derived by neglecting
62/6U in (5-25b). This approximation is the first term in the sys-
tematic expansion of ¥ in a series in V and G:

Zgp(L150) = 21 [ 42 V(1 - 3)G(3,3+;u) 6(1 - 1)
+iV(1 ~ 1) G(1,1%;0)

The next term comes from approximating 8% /86U by 6% /6U in
(5-25b). Then (5-25b) becomes HE

FANE AN ENINTTAN G LCVIRITC IS WIS RIS WA CRAF RN DRSS B

-ip )
1Y) = ' i2 dl d2 v(1 - 2)G(1,1;U)
z(1,1%;0U) EHF(I.I ;U) 2 j;
8 % vl <D eBEraElE -
.. B3v(a-3)6(3,37;08(1-1)
xomm[f {1=5]
+ V(- 1')G(i,1';U)]

However, 6G =—-G+6G™! -G, so that to lowest order,

M = G(1,2) G(2,1')

6U(2)
Therefore, we find to second order in V,
2(1,150) - 1 .- (1,150)
=+ [d2d3 v(1-2)v(3 - 1)[G(1,1;U0) G(3,2;U) G(3,3;U)

+ G(1,3;U) G(3,2;U) G(2,1;1)]

- v ’ 1 ’ - ~ - (5"28)

R

where the lines represent G’s. Equation (5-28), when U is set equal
to zero, is the Born collision approximation.

. 43/2 C Y a
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5n(R,T) = e Ru,K f a1 glﬂj(k,r -1 etT

w0
% f
-0

dw e—le f

211 w —ie

ee By f‘ dy o W IDT
k J_. 27 w - ie

, -i(w+iz)T’ &n
dT — -7’
. &U (k, =T")

[
X
-w0

-keBy [T gn T e
kK Jowrgp 211 R-ig+e) sy (62)
o+i¢ -iQT
= olk"R a2 _ e on
Y f_mn; 21t @ =it +e) (O_U)o (R K(k3)

Suppose that K has the pole in the upper half-plane at = ¢, but 18

we can write the 2 integral as a loop around the pole and an integral
from =« to = just above the real axis. The contribution to 8n from
the pole is therefore

ok R 10T (=2n1) (residue at )

This term increases exponentially in time, which would seem to
indicate that the potential U has excited an unstable density fluctua«
tion. It really implies that the random phase approximation is un-
able to describe the system (except for very short times), and that
there are physical processes occurring in the system that call for
a better mathematical approximation. The appearance of the pole in
the upper hall-plane has been suggested as a way of sceing dynam-
fcally that the collection of particles with attractive interactions has
undergone a transition from a gas to n llquld.t

Later we shall see a similar instability occurring in fermion sys-
tems with an attractive short-range interaction, The onset of this
instability represents the transition to a ‘‘superconducting’’ phase.

IN. D. Mormin, doctoral thesis, Harvard University, 1961.

< o

otherwise analytic in the upper half-plane. Then, since t > =i, = Q: it

vt

Relation between
Real and Imaginary
Time Response Functions

In the last chapter we used the Hartree approximation to describe
nonequilibrium phenomena. Unfortunately, we cannot directly write
more complicated approximations in the real time domain because
we have no simple boundary conditions that can act as a guide in de-
termining g,(U). Therefore, we have, at this stage, no complete
theory for determining tne physical response function g(U). [As we
saw in Chapter 4, simple physical arguments do not suffice to de-
termine approximations for the two-particle Green’s function; it is
necessary to use the boundary conditions to determine the range of
the time integrations in, e.g., (4-6) and (4-7).)

In Chapter 5 we developed a theory for approximating I and there-
fore G,(U) in the imaginary time domain. Now we shall discuss the
relationship between g(U), the physical response function, and G(U),
tne imaglnary time response function, and show how tne theory al-
ready developed suffices to determine g(U).

8-1 LINEAR RESPONSE
There I8 a particularly slimplo relation between the linear re-
sponses of tne denslty {n the two tiime domains. In the imaginary

time domain,
i )] - ) I\ ’
ﬂ-&o!d%;)_l - 4 [G,(12,12%) = 6(1,1)6(2,2"))
llence the response of the density can be written
\ 5
al 92%1‘;%5)1‘-’) “1(6,(12,1°2') = G(1,1)6(2,2")]

=4 [T @)y = (nyem) (6-1)

87



In discussing this response it is convenient to definé - ' *

- i [0G(1,1%U)
L(t = 2) 11[——-——-‘——-—6U(2) ]U.,O

|—

== (T[(n(1) = (n))(n(2) = (n))]) (8-2)

(=

We should notice that L(1 — 2) is quite analogous in structure to the
one-particle Green’s function. Just as G(1 ~ 1) is composed of the
two analytic functions of time G>(1 ~ 1’) and G<(1 - 1), so

L(1-2)=L>(1-2) fort,>t,
=L°(1-2) fort, <t (8-2a)
where

L(1-2) = 3 ([n(1) - (m)](n(2) = (n)])
L<(1 — 2) =1i ([n(2) = (n)][n(1) = (n)]) (8-2b)
As G satisfies the boundary condition,
e kR 2 aBlary s
G(1-1 )1t1=0 e "G(1-1 )|t1=_i{3

so L(1 — 2) satisfies the boundary condition

LA -2)f o= LU= _ (8-3)

Therefore, L can also be written in terms of a Fourier series as

Li-2= [l ) ol T1-ra) - iultimt) (g gy
14
where
Qy = ."::g v = even integer (8-4b)

In exactly the same way as we establish that the Fourier coefficient
for G(1 - 1) is

Glpz) = [ 9 Alpw)

2 z-w'
_ [dw’ G’(p,w’)* G (pw’)
2n z—w’

we find that

do’ L(kw’) = L(k,w’)

L(k,Q) = = 1oL i
where
b4 ©
L" (kw) = f dr, f dt, ek (ry - 1) +iwl(t, - t,)
2
x IL(x, =1y ty = t) (8-5b)

The function L(k,Q) is the quantity that is most directly evaluated
by a Green’s function analysis in the imaginary time domain. The
linear response of the density to a physical disturbance can be easily
expressed in terms of L(k,Q). The physical response is given as:

(n(1))y; = € W) (1) ult,))

where

u(t) = T{exp [—1 [: d2 u(2) n(2)]}

and all the times are real. Hence, the linear response of (n(l))U
to U is

ol g(1,150)]= 6 (n(1))yy

/

t
-1 f " a2 ([n(),n@]%(2)

-0

b 9

t
= f " a2 [L>(1-2)=- L1~ 2@ (8-86)

These functions L and LS are exactly the same analytic functions
as appear in the coefficient of (8-2) of the linear term in the expan-
sion of G(U). This is the fundamental connection between the two

linear responses.
If

ik-R - iQT 2
UR,T) = U, X (8-17)
then

5 (n(1) )U = (6n/8U)(k,Q) UR,T)

e F[CD-CaEEta ) F K0



at iR

where A ' S e " 6G(1.1:U -ip -8
" ‘ ‘»‘ ) J—-—'—Zw(z) == f d3 f d3’ G(1,3;U)G(3,1/;U)
Gn/on)k@) = [ * at, [ar, "o ial-t) ad ° ° Sk = -G3E &
~ y e’ ”k/:—\ x OG-‘ 31 3"U -
- /""r Q- CU\Z)
X [L70ry =1t = tg) — LM, —=ry t, — )] ,,r-.: WO A W SUee(3)
. o f . 1y S0ett
t o et | - L d3 G(1,3;0) G(3,1";0) =515
l 1 o d ’ ' .
=1 [t [T -l.—&#(‘:'ﬁ)ﬁ ). — -i -8
= = ok QoL = G(1,2;U) G(2,1;0) & 1 f d3 f d4
0 0
S f) — 1 < Q- w’)(t, - t,) ¥
X [L (ksw ) L (k.w')] e 1 2 ‘ X G(I,S;U) G(a’ll;U) v(3 - 4) .o_g.é%lf—z)iu—) (8-9)
Q-0 i)
_ dw’ L>(k,w' ) — L(k,w’) > « 2 Therefore, in the Hartree approximation,
=) Q- L%(w) <TAIL ﬂiﬂ ’
L1-2) = & OG0
However, we can recognize this last expression as just L(k,Q), so that U=0
-ip -ip
(6n/6U)(k,Q) = L(k,Q) (8-8) = 2iG(1-2)G(2—-1) + J; ds3 J; d4
Therefore, the Fourier coefficient function L(k,2) is exactly the lin- x [+ iG(1—2)3(3 - 1)]V(3-4)L{4 - 2)
ear response of (n(1) )y to a disturbance with wavenumber k and fre-
quency 2 in the upper half-plane. If we define
Let us determine this Fourier coefficient by using the Hartree
approximation in the complex time domain. We certainly expect that Lyl -2)=2iG(1-2)G(2 - 1) (8-10)
this approximation has the same physical content as the real time
Hartree approximation. Therefore, we anticipate that the linear we can write this approximation as
response L(k,Q) computed irom this approximation for G(U) should
be identical to the (6n/6U)(k,Q) that we computed in the last chapter -ip -ip
by means of the random phase approximation. L(1-2)=Ly(1-2) + I d3 I d4
In the imaginary time domain, the Hartree approximation is o <
x Lo(1=3) V(3 -4)L(4 - 2) (8-11)

-1 ’. - .?... sz._ ] -1/
G150 = [i 2+ gk = VgD 81 - 1)

-ip
= ‘ _..a.. lzL_ —2
[l 3% 2m () Fi fo d2 v(1 - 2)

x G‘(z,z;u)] 8(1-1")

We can compute

ad By om alial g
’} {'3(0): “)5; ¥

By employing the boundary conditions on G

G(1-2)|, _o=¢ ePrg(1-2) ly,=-ip
1

G- o=t e -2, _

satisfies the same boundary condition (8-3) as L.

e can see that L
A . d in a Fourier series of the form

Thus, L, may also be expande



voTe,y AL a4 rourier coefficient L Q). 3 Co
lows that o(k,2y). From (8-10) 1t’f81-

Lo (1-2)=1iG"(1 - 2) G52 - 1)
Ly(1-2) = 1iG (1 - 2)G”(2~1)

and hence

2 - dp’ dw’ >
iR i) = f(—?%s - G (p’ + /2, 0+ w/2)

X G§(p' —k/2, w - w/2)
so that
L (,w) — L(k,w) = f(—g% L AR k2, w0t w/2)
X Alp’ ~k/2, w’ —w/2){[1 2 f(w’+ w/2)]
X flw' ~ w/2) ~ f(w’ + w/2)
x[1£f(w’ - w/2)]}
Because (8-11) is derived by differentiating the Hartree approxima-
tion, the G’s that appear in (8-10) must be the Hartree Green’s
functions, and for these
A(p,w) = 216(w ~ E(p))

= 216(w — p?/2m — av)

Therefore, Ly — L$ takes the simple form
Ly lw) - Lilew) = [ (o0 276(w ~E(p + k/2) + E(p— k/2)

X [1(E(p - k/2)) — £(E(p + k/2))]

It follows then that the Fourier coefficient L,(k,Q) is

’ > " < s
Ly(k,Q) = f do? Lo () = f}?(k’w)

- f_dL H(E(p ~ k/2)) = {(E(p + k/2)) (8-12)
(2m)® € —k-p/m

- - rto-i8

If we compare (8-12) with (7-23), we see that

Ly(k,R) = (g—:})o (k,%) (8-12a)

The latter function is the quantity that appears in the solution of the
real time Hartree approximation.
Now it is trivial to solve (8-11). We multiply it by

e ke (r =) iRyt ) and integrate over all r, and all t, be-

tween 0 and —i$. In this way, we pick out the Fourier coefficients
on both sides of the equation and find:

L(k,Q) = Ly(k,2,)[1 + v(k) L(k,Q,)]
and therefore

L(k,Q) = Lo(k,Q) [1 + v(k) L(k,Q)]
Thus

_ (k,2)
L9 = Tl L. a0
or

1 = v(k)(6n/817), (k,Q)

L(kQ) = (8-13)

We recognize this expression for L(k,Q) as exactly that derived
for (6n/6U)(k,2) in the random phase approximation [cf. (7-18)].
Therefore, we see that (6n/6U)(k,2) can be determined equally well
from the imaginary time theory. One just has to solve for L(k,R),
using an approximation for G(U), to find the physical response
(6n/8U)(k,R2).

Unfortunately, this procedure for determining the physical re-
sponse from the imaginary time response is very difficult to employ
for approximations fancier than the Hartree approximation. It is
only for this approximation that we can solve exactly for the response
and hence obtain an exact solution for the Fourier coefficient. In
other situations, we cannot obtain an explicit form for L(k,Q) from
the imaginary time Green’s function approximation, and hence we
cannot employ the simple analysis that we have developed here.



8-2 CONTINUATION OF IMAGINARY TIME RESPONSE © '™
TO REAL TIMES

We snould really like to have approximate equations of motion for
g(U). However, these are hard to obtain directly, because g,(U) sat-
isfies a somewhat complicated boudary condition, Instead o; working
with g,(U) directly, we shall show how g,(U) may be derived from
G,(U). We have a theory, developed in Chapter 5, for determining
the latter function. By expressing g,(U) in terms of G,(U), we obtain
a theory of the physical response function.

We begin this analysis by introducing an essentially trivial gen-
eralization of G(U) and G;(U). These functions were originally de-
fined as for pure imaginary times in the interval 0 < it,it’ < 8, How-
ever, there is nothing very special about the time zero. We could just
as well define Green’s functions in the interval [t,, t, — 18], i.e.,

0<ilt—t)<B  (t, real) (8-14)

For times in this interval, we write

T|Sy»(1 '
ourasy-} g

(8-15a)
where
to-i8
S = exp [—-i ‘/t‘o d2 U(2) n(z)] (8-15b)

Here T orders according to the size of i(t —t,); operators with
larger values of i(t —t,) appear on the left. When t, = 0, the G(U;t,)
defined by (8-15) reduces to the G(U) discussed in Chapter 5.

The theory of G(U;t,) is identical to the theory of G(U). This gen-
eralized response function satisfies the boundary condition

’.q7 _ L BH I
G(1,1%;U3t,) 't,=t° seP*G(1,17;U5t,) e =t, - 18
instead of
G(1,17;U) | =2 PP a1
e tl___o L] t1="“3

Therefore, the only change that has to be made in the formulas of
Chapter 5 to make them apply to G(U;t,) is to replace all time in-
tegrals over the interval [0,—18] by integrals over [t to~ i8]. In
particular, G(U;t,) satisfies the equations of motion:

L INE. . ] 11w, fto-tu :
[ + 34 - u)] 61w i

x T (1,1;U;t,) G(1,1%;U5t,) = 8(1 = 1) (8-16a)
and

3 t,-1p
el oo MU o '] LTt - f° g
[ iatl: o= u(1’)| G(1,1°;U;t,) s d1

x G(1,1;U;t,) T (1.17:U5t,) = 6(1 — 1) (8-16b)

We shall now establish a rei>tionship between G(U;t,) and g(U) in
order that we may convert (8-16) into equations of motion for g(u).
To do this, we consider the case i(t, = t,) < i(t;y = t;). Then

G(1,1%;U;t,) = G<(1,1°;Ust,)

1 (T[Syt(1)p])
i (T[sh

= £ (1/1) ( Ulty, to — 18) [t (t,ty )yt (1) Ulte,ty)]
x Ut(to,t) 9(1) Ulte,t)) / (ulty, to—18))  (8-17)

=&

where

t
ulty,t,) = T{exp [—-i j: " a2 U(2)n(2£” (8-17a)
(]

For comparison we write the phys ical response function, which is
defined for real times. For example,

g<(1,1;U) = 2 (1/1) Pyt (1) yy(1))
=z (l/i) ([uf(ty)lﬂ(l') u(tu)]
x [ut(t,) (1) ut))) (8-18)

where

W) =T {exp[—l f :‘ d2 u(2) n(Z)]} (8-18a)

Let us consider the case in which U(1) is an analytic function of ty
for 0> Imt, > —B, which satisfies



lim U(t) =0 " (8-19)
Re f, v=w

For example, U(R,T) might be erik-r- ol where ImQ > 0. If
U(R,T) is an analytic function of the time, then U(ty,t,) and u(t,) are
analytic functions of their time variables in the sense that every
matrix element of each term in their power-series expansions is
analytic. If all sums converge uniformly, as we shall assume,
G*<(1,1";U;t,) and g<(1,1’;U) are then each analytic functions of their
time arguments. The analytic functions U(t,,t,) and U(ty) can also be
defined by

i(/at) u(t,) = f dr, n(1) UQ1) u(1)
(8-20)

U(-=) =1
and

1(3/at,) Ulto,ty) = S dr, n(1) U(1) Ulty,t,)
U(ty,to) = 1

Because of this anaiyticiiy it follows that

lim  U(ty,t,) = ult,)

t,»~oo

and, because of (8-19)

lim  U(ty,t, —iB) =1

te - —

Therefore, the analytic functions G<(1,1’;U;to) and g<(1,1’;U) are
connected by

.li.".],., G115 Ut ) = g<(1.1511) (8-21a)

and, similarly,
Jim G7(1,1%5U5t,) = g7(1,1%;0) (8-21b)
In order to have a simple confirmation of the result that we have

just obtained, let us compute 1 iG*(1,17;U;t,) and 4 ig*(1,1;U) to
first order in U. These are

+ 1G*(1,1;U;t,)

t,-ip3
=(n)+ft°° a2 (1/1) (T{[ n(1)- (n)][n(2) - (n) ]}) U)

t
=+ [ 1 d2 (/1) ([n1) = (n)] [n2) = (n)] Y U2)
t’O

tl
—ft " d2 (1/i) ([n(2) = (n)] [n(1) = (n)] ) U(2)

(]
) ftl d2 L>(1 - 2)U(2)
- -+ —
(n A
tl
- f d2 L<(i - 2)U(2) (8-22)
to-iB

Since L” and L are analytic functions of their time variables, when
U is also analytic, the right side of (8-22) is clearly an analytic func-
tion of t, and t,. If we take the limit t, — — =, (8-22) becomes

t,

li iG*(1,1;Ust,)] = + d2
t,irf’..[“ ( te)] = (n) .[.,

x [L”(1-2) - L<(1 - 2)]U(2) (8-22a)

This should be compared witn (8-6), which indicates that the physical
response is

(n(1))y = +ig*(1,1;0)

= b > <
=(n) + f_w d2 [L”(1-2)-L(1-2)]u(2) (8-22b)

This is, of course, the same as (8-22a).

8-3 EQUATIONS OF MOTION IN THE REAL TIME DOMAIN

We now describe how appruximate equations of motion for G(U;t,)
may be continued into equations of motion for the physical response
function g(U).



I:et us begin with the very simple example, the Hartree approxi-
mation. In this approximation (8-16a) is

3, v
[i o - Uegt(13t)] G(1,17303t) = o1 - 1) (8-23a)
where
Uef(R,Tity) = UR,T) ¢ i f dR’ v(R ~R’)
X G‘(R'T;R'T;U;to) (8-23b)

We consider the case in which i(t, — t,) < i(t,s —t;). Then
i a_ + 1:. -U (1- < ’.
1 atl 2m eff ’to) G (1;1 :U;to) =0
Using the analyticity of U(R,T), we take the limit t, — —« to find

Uegs(R,T;-=) = UR,T) + i / dR’ v(R - R’)

x g<(R'T;R'T;U) (8-24a)

and

2
[i ait, + zv—n‘, = Ueﬁ(l;-w)] g<(1,1;u) =0 (8-24b)
These equations hold for all complex values of t, and t,, such that
B> Im(t, = tl,) 2 0. When they are specialized to the case of real
values of the time variables they become just the familiar statement
of the real time Hartree approximation.

Our original derivation of the Hartree approximation depended in
no way on the analytic properties of U(R,T). In fact, the validity of
the equations for g(U) that we shall derive does not depend on the
analyticity of U at all. The analytic continuation device is just a
convenient way of handling the boundary conditions on the real time
response functions. It also gives a particularly simple way of see-
ing the connection between the imaginary time G(U) and the physical
response function g(U).

This same continuation device can be applied in a much more
general discussion of the equations of motion for g(U). The self-
energy Z (1,1’;U;t,) can be split into two parts as

Z(L,15Uty) = 20 (L15Ust) + I (1,1%;U;t,) (8-25)

" where the Hartree-Fock part of § is

ZUF (1,17;U5t,) = &(t, ~ t,,) {£ i6(r, — r,,) / dr, v(r,—r,)
X G<(rytyrat ; Usty) + ivir, — ) G(1,17U5t,)} (8-25a)

and the collisional part of Z is composed of two analytic functions of
the time variables £> and Z°:

2'.>(1,l';U;t°) for i(t, —t,;») > 0

Z(1,15U3t,)

(1,17 5U5t,)

for i(t, —t,,) < 0 (8-25b)
For example, in the Born collision approximation
z‘,c(l,1 LUt =2 12 f dr, dry. v(r, — ;) v(ry — rys)
x {G(1,1";U;t,) G(2,27;U;to) G(2,2;Ust,)

- G(1,2";U;t,) G(2,17;U5t,) G(2',2;U;t°)}t’ o (8-26a)

ty = !::
so that => and Z° are
2
Z5(1,15U5ty) = 2 f dr, dry v(r, — r)v(rys —ry)
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x{GX (1, 1757T3te) G2(2,23U3t) 672", 2, to)

£ GX(1,23U3ty) G3(2,1;Usty)

x G52V, (8-26b)

t,l - t‘l
Since the G> and G are analytic functions of their time variables,

2
so is Z°. . ]
For the sake of simplicity in writing, let us for the moment drop

the exchange term in Zo.0, i.e., the term proportional to v(r, = ry)

in (8-25a). Then (8-16a) becomes
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For the case i(t, — to) < i(t,,— to), this gives
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If we now take the limit t, — — «, we find that g*(U) obeys

2

L8 Vi ;
[' at, ' 2nm Ueff(l)] 2 11m

R A 2 .
5 f_n d1[2>(l,l;U)— Z<(1,1;U)] g<(1,1;v)

TV e y 3
= f_n di 2°(1,1;0)[¢>(1,1;0) - g<(,15;0)]  (8-27a)
where
Uegf(1) = Uggg(1;—=)

2

< 2
Z (1,150) = Z (1,1%;U;-=)

Applying the same arguments (8-16a) in the case i(t, - TR
we find ) i(t, —t,) >i(t, —ty),

o
[‘ i s Ueff(l)] g7(1,150)

- f:‘ [z:>(1,i;u) - z‘(l,i;U)] g”(1,1";0)

t ’
-fl 27(1,1;0)[g7(1,17;0) - g<(1,1;0)] (8-27h)

Similarly, (8-16hb) implies

G v
-5 3 - vttt

tl. - > - - < -
- [ di [0, 50 - g0, 5] 2°,150)

w0
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- f g (l,l;U)[Z (1,1;U) - Z (1,1';0)] (8-28a)

and
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When £”(U;t, = - =) and Z<(U;to = -«) are expressed in terms of
g”(U) and g<(U), then (8-27) and (8-28) can be used to determine the
real time response functions g”(U) and g<(U). For example, the
Born collision approximation for g(U) is derived by using (8-26b)
to find

> >
< <
Z (1,10)= 2 (1,150 = =)

=+ i2 [dr, dry VT, SR vy =1)
x [g2(1,10) g3(2,2;W) g5(2,2;0) + g%(1,2'30)

2 ’. 2 ’ o b 9
x [£52,150) g3@20)), _y ¢ oy, (8-29)

Equations (8-27) and (8-28) are exact, except for the trivial
omission of the exchange term in EHF' In Chapter 9 we shall dis-

cuss how these equations may be used to describe transport. In
particular, we shall use the approximation (8-29) to derive a gen-
eralization of the Boltzmann equation. We shall also use these
equations to discuss sound propagation in many-particle systems.




