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Concepts
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Summary: concepts, tools, and procedures to know

Concepts and Tools

o Weakly excited systems in matter behave as if they were a set of indepen-
dent damped harmonic oscillators: the frequency @;; is related to the energy
needed to excite the state and the relaxation time T describes the state lifetime,
hampered by interactions with the surroundings.

e The average power dissipated by an external force acting on a medium pro-
vides information on the induced fluctuations, in particular on frequencies
and damping of the modes in the system, or else its excitations. The link
is provided by the imaginary part of the response function, that is in turn con-
nected to the dielectric function. This is how most measurements do work.

e The dielectric function £(®) = E..(®)/E(®), essentially measures the ca-
pacity of the medium of screening the acting external field.

e The real part of the dielectric function drives the propagation of radiation and
the imaginary part determines absorption phenomena.

e Propagation and absorption behaviors are related to each other. Mathematically,
through the Kramers-Kronig relations.
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e The characteristic behaviors of materials can be probed by observing the
response of the system to external disturbances: these are conveniently cho-
sen of the type, frequency and wavelength suited to excite a time and/or space
fluctuation about the average value of that given property. The way the sys-
tem responds, reveals information on interactions, statistics, and dimensional-
ity. The temperature dependence of response coefficients is determined by the
microscopic interaction driving the scattering event, as well as by statistics and
dimensionality.

e When slowly-varying external disturbances act on the material, conditions of
local thermodynamical equilibrium can be considered in the sample, that are
set in by the high collision rate on the scale of external disturbance variations.
This is the collisional or hydrodynamic regime.
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Summary: concepts, tools, and procedures to know

Concepts and Tools

e In quantum world statistics automatically introduces a correlation due to
exchange. To this, a correlation originated by the interaction between the
particles is to be added.

e Exchange has negligible effects whenever the single-particle wavefunctions are
not overlapped and is quite effective when the particle wavefunctions are delo-
calized, as in crystals and especially in metals.

e The quantity ng(r,r’) can be viewed as the particle density which would be
observed when sitting on the particle at position r.

e The density profile n..(r,r’) can be viewed as a hole that is dug in by exchange
and correlation processes between the system particles, leading to screening of
the interactions.

660 6 Correlations and Density Functional Theory

¢ The adimensional parameter r; = ro/a, measuring the system density can
be identified also with the system coupling strength.

e The excess energy due to exchange and correlations modifies both potential
and kinetic energy. This is a purely quantum effect, whatever the statistics
of the particles might be.

e Inclusion of the exchange term works to keep the electrons far apart because
of the Pauli exclusion principle and therefore lowers the energy. This effect is
expected to become progressively negligible while the density lowers.

e In metals spatial correlation effects are relevant and are to be treated to some
extent together with the spin correlations.

e Exchange and correlation effects are connected to screening. The quantity & is
a measure of the number N; of induced charges contained within the screening
sphere with radius R;. In an insulator N; < Z, whereas in metal N; = Z implying
gy — o0 and Ry — oo,
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The response function measures the change of a given observable as a consequence of the
action of an external perturbation coupling to the same observable or to a different one to
which it is correlated. Mathematically, a response function (the imaginary part of it) is in
essence the equilibrium average on the commutator at different times between the
operator related to the observable and the operator related to the quantity to which the
external disturbance couples. By this means, a non-equilibrium property is related to an
equilibrium property.
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The dynamical structure factor (is a correlation function and) measures the intensity of the
scattered probe (particle or radiation) after this has impinged on the sample material and
exchanged (lost or picked up) energy and momentum with (to or from) the excitations of the
system. Ratios between the intensities of Brillouin (finite frequency) to Rayleigh (elastic,
zero frequency) peaks yield information on thermodynamic derivatives such as specific
heats. Widths of the peak yield information on transport coefficients (see Appendix below).
The imaginary part of the response function measures the dissipated power of the probe
into the sample

The response function is characterized by space and time symmetries are built in the system.
Structure factor and imaginary part of the response function at finite temperature are
related to each other: the dissipated power of the probe on the sample provides
information on the (spontaneous) fluctuations of the excited observable and thus on the
system structure.

Sum rules are exact expressions composed from n-th frequency moments of the imaginary
response function - thus of commutators with the Hamiltonian - which help setting
benchmarks to approximated response functions.

Variables which are associated with the densities of conserved quantities (particle or spin
density and related currents, energy,...) are almost time independent when the conserved
quantities vary slowly in space: the time Fourier transforms of their spatial integrals - i.e. the
k=0 part of the spatial Fourier transform - are proportional to a delta-function in frequency.
Under these conditions, their behavior is governed by hydrodynamic laws. Thus, the
equations of hydrodynamics and the associated thermodynamic and transport behavior
described by transport coefficients, can be deduced from theoretical calculation or
experimental measurement of the long-wavelength, low-frequency correlations functions
(performing the limits in appropriate order).

The poles of the frequency and momentum-dependent response function represent the
frequencies and damping constants of the normal modes (excitations) of the system (e.g.
sound velocity and its attenuation). Modes are of two types: propagating modes (e.g. a
density fluctuation propagates as an ordinary sound waves) and diffusive modes (e.g. an
entropy fluctuation spreads out diffusively by a random walk process)

The residues represent the effectiveness of external disturbances in setting up these modes.
In particular,

a) in the k-limit in which the frequency goes to zero first and then k goes to zero, the
response function yields the static susceptibilities which are thermodynamic derivatives of
the conserved quantities with respect to their conjugated variables (e.g. magnetization with
respect to magnetic field)

b) in the omega-limit in which the wave number goes to zero first and then frequency does,
the expression for the response function reduces to a constitutive equation relating the
current of a conserved quantities (e.g. pressure that is the current of the momentum) to the
gradient of the conjugate variable (e.g. fluid velocity or vector potential)

c) the real part of the coefficient relating these two latter quantities is the corresponding
transport coefficients: thus transport coefficients can be obtained both from the poles (e.g.
as diffusion coefficients) and from the residues of the response function (e.g. as viscosities).
These is the content of Kubo relations

If the number of conservation laws is - say - N, the number of thermodynamics correlation
functions is N?, and N2is the number of thermodynamic second derivatives - like
compressibility and other susceptibilities like spin susceptibility - and N2transport
coefficients. The number of independent terms is smaller whenever symmetry properties
exist.

Microscopic hydrodynamic (Navier-Stokes for normal fluids) equations can thus be obtained
by combining together the following exact relations and comparing them with the low
frequency and wave number expressions of the response functions:

conservation laws relating the time derivative of the quantity (for normal fluid: particle
density, current density, energy) to the divergence of the corresponding current (for normal
fluid: particle-current density, generalized pressure, or stress tensor, and energy-current
density)

galilean transformation, zero-force and zero-torque laws
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- constitutive relations, that are expansions of the current densities to first order in gradients
of the local conjugated generalized forces (velocity field representing the analogue of a
vector potential which might trigger transverse currents, temperature and pressure). In
essence, the constitutive equations relate the current of a conserved quantity (those just
listed above) to their:

a) non-dissipative part (density times velocity field for the particle density, pressure for the
stress tensor, velocity field times energy density plus pressure for the energy current)
because of galilean transformation, and

b) dissipative part driven by the gradient/divergence of the conjugate variable dictated by
zero-force (momentum conservation) and zero-torque (angular momentum conservation)
laws, via fluid viscosities (velocity field for the stress tensor via the bulk and shear
viscosities, temperature for the energy current via the heat conductivity). So for example, an
energy current can be produced by a nonzero average velocity field carrying energy and/or
pressure, but also by a temperature gradient (even if the average velocity is zero). Note that
particle-density current is driven only by non-dissipative terms (thus, no pressure and no
temperature gradients via related viscosities), nor the energy-density current involves
pressure gradient-driven terms, because of zero-force theorem

- thermodynamic relations, connecting the gradient of local generalized forces (like pressure
or temperature in normal fluids) to the remaining variables (like local particle and energy
density), via thermodynamic derivatives connected to frequencies of excitations (e.g. speed
of sound) and their damping
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Procedures
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e Given H with external perturbation acting on a selected observable, express the space and
time/momentum and frequency fluctuation of the observable out of equilibrium in terms of
the real-time response function. In particular:

e -Single out the real and imaginary time parts of the response

e - ldentify the imaginary part with dissipation

¢ - Relate the following quantities: response function-dynamical structure factor-pair
correlation function

¢ Relate imaginary part of response function and dynamical structure factor at finite
temperature (fluctuation-dissipation theorem)

¢ Relate system properties to the response function: screened potential, correlation energy,
pressure and compressibility [Ch. 5.6 Mahan and/or Ch. 2 Kadanoff+Baym]

e Calculate sum rules

e Calculate the response function in Random Phase Approximation by equation of motion
method and corresponding dielectric function [Ch. 5.5.B Mahan]

e Write hydrodynamic equations by combining conservation laws, constitutive relations,
thermodynamic relations, galilean transformations, zero-force and zero-torque theorems
[Ch. 4 Forster and/or P.C. Martin]

¢ Link phenomenological viscosities, transport coefficients, diffusion constants, frequencies
and damping of excitation modes, and thermodynamic derivatives with k- and frequency-
limiting behaviors of response functions (via Kubo relations and thermodynamic sum rules)
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Proposed exercises
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e Properties of response functions and connections with pair correlation function and
structure factor

1. Problems 9 and 10 page 494 Ch. 5 of Mahan Il edition

2. Problems 3 to 8 pages 127-128 Ch. 6 of Kittel Il rev. edition [solutions in Appendix]

¢ Calculate RPA response and/or dielectric functions and its extensions

1. Study the paper
Journal of Physics: Condensed Matter Volume 6 Number 42
S Conti et al 1994 J. Phys.: Condens. Matter 6 8795 doi:10.1088/0953-8984/6/42/011
Dielectric response of the degenerate plasma of charged bosons in static-local-field
approximations
S Conti, M L Chiofalo and M P Tosi
From <http://iopscience.iop.org/0953-8984/6/42/011>

2. Examples in Ch. 5.1-5.4 of ladonisi, Cantele, Chiofalo and Problems with solutions 5.1-5.5
therein

3. Use the RPA for a fermion system at very low temperature to determine zero and first sound
collective excitations [e.g. Ch. 7.4 of Kadanoff and Baym ]

e Sum rules
1. Study the paper
Journal of Physics: Condensed Matter Volume 8 Number 12
M L Chiofalo et al 1996 J. Phys.: Condens. Matter 8 1921 doi:10.1088/0953-8984/8/12/007
Sum rules for density and particle excitations in a superfluid of charged bosons
M L Chiofalo, S Conti and M P Tosi
From <http://iopscience.iop.org/0953-8984/8/12/007>
2. Problems 16. and 17. page 495 Ch. 5 of Mahan Il edition

e Connection with microscopic hydrodynamics

1. Study the example of spin diffusion in either Ch. 2 of Forster or (preferable) Sec. C of P.C.
Martin
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Fig. 16, Behavior of yi(kw) in the non
shown in Fig. 15. (a) For the weakly intera
Gaussian, with a width proportional 1o t
Interms of a mean free time t the hydro

-_hydrodyna.mic regime for the same systems
cting gas the behavior is like that of a free gas:
he thermal velocity v and the wavenumber k.
. dynamic width Dk? ~u(vtk) k overestimates the
result in thF non-hydrodynamic (ker > 1) regime. A parametric Lorentzian fit to 2 (kw) of
the !’Orm fllscussed in the text therefore requires T (k) ~7-40) + kv. (b) For the iso-
tropic solid, phonons persist in the non-hydrodynamic regime but their damping is also
s_ma]ler than hydrodynamics predicts; the strength of the phonon peak may be substan-
tially reduced by anharmonic effects with *many-phonon™ contributions giving the
remainder of the sum rule.

D. Correlations of Conserved Quantities, Particularly the Density

The examples we quoted in the previous section are discussed in a paper
by Kadanoff and myself2%, Also discussed in that paper are the corresponding
formulas for the remaining hydrodynamic parameters— the energy and den-
sity. Of these correlation functions, the one that is most easily accessible to
measurement is the density correlation function. In these lectures we will
not have time to go through the hydrodynamic analysis which leads to
predictions for the density correlation function like those obtained for yr
and y,,,, in Section C. Instead we shall content aursclvc's \}fith quoting
the results for y,, and commenting on their experimental sl_gmﬁcartoc, _

Before doing so, however, let us merely state the generalization its deri-
vation entails. The chief new feature is the necessity for treating simultane-
ously the conservation laws for all densities whose cm_'rcnts depend pheno-
menologically on common density gradients, and which tl?crcforc _lead to
coupled linearized hydrodynamic equations. Bec_ausc of this couplmg, the
correlation functions of a particular density, like those for a pamcu_lar
coupled oscillator in Section A, exhibit several normal modes with varying
strength.

In gtthe thermodynamic discussion of a fluid we would encounter diffi-
culties if we tried to describe a two component system using only the laws
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MEASUREMENTS AND CORRELATION FUNCTIONS €1

of mass and energy conservation and the associated thermodynamic
description, or if we tred to describe a one component fluid as we describe
a photon gas, using only the law of energy conservation and not specifying
the mass density. Likewise, in a ferromagnet, it would be inadequate to
employ an ensemble in which the magnetization direction is unspecified.
For each system an ensemble must be employed which stipulates all con-
served quantities. Only when they are all taken into account, and experimen-
tally controlled, will measurements give well defined results with small
fluctuations and correlations have finite range. Correlations in a ferromag-
net extend over large distances; it is only when the direction of magnetiza-
tion is stipulated that the remaining correlations have finite range, and
experimental results microscopic significance.

When the ensemble is described by a certain number of conservation
laws, say n, the number of thermodynamic correlation functions is of
order n*. Correspondingly, there are about »* thermodynamic second
derivatives (like compressibilities and susceptibilities) and a similar number
of irreversible or Onsager coefficients. The number of independent terms
is actually somewhat smaller because of a number of symmetry properties?’.
A general discussion of thermodynamics, both reversible and irreversible
must take account of these thermodynamic cross derivatives and terms
like thermal diffusion coefficients which relate currents of one conserved
quantity to derivatives of another. Tt must also be concerned with the effect
on the frequency and damping of the n **hydrodynamic normal modes™
like sound propagation in which oscillations of the various conserved
quantities participate. For example, it is the coupling of density and energy
fluctuations which leads to the replacement of the Newton sound velocity
¢* = (dp/dmn)r by the Laplace sound velocity ¢* = (dp/dmn),. Likewise,
it is this coupling which leads to a temperature diffusivity D = x/mnc, in
place of x/mnc,, and to an attenuation of longitudinal sound by thermal
conduction, as well as by longitudinal viscosity. Specifically, the frequencies
of the two coupled longitudinal normal modes in a fluid are given approxi-
mately by

w? — c,’k’ + iDdc*or = 0 Q3]

where, in terms of the bulk viscosity {, the shear viscosity 7, the thermal

conductivity x, the specific heats at constant pressure c,,, and volume, ¢,,
we have

mcf:(ﬁ); DI=M+L(L——1—), N
dn /4 mn mn \ ¢, c,

and

3=0; Dy =—>

(3
e,

The quantity s is the entropy per unit mass.
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[In superfluids, apart from dissi

. Pative terms the corresponding equations?®

mie} + ¢}y = e $* [ dp
Hy o dn J,

melcd < In 5% 4ap
Ry ¢y \ dn T
where n, is the superfluid density and #, 4 n, = n]

The comparison of hydrodynam; i i i
aluded sbn o ives y. 1cs and correlation functions to which we

i) = "(ﬂ) [ Dikall - (eifep)]
e)rl o ¥ Dy T

Dyiwci(c,fc,)
(@ - clk?)? + (D,k’a.})‘]

- n(ﬁ{l_) Dzk’w(aF - l‘.‘}kz_)[l - (c”fc’)] .
P/r (@ =il + (D k) @
aolkw) = T (—61) [ Dkle  __ Dicolo? - cik’)
0T/, L@ + Dk (0 — cik?)? + (D, kPw)?
+ %gz;:(kw). ®

and

mne, TD,k*w e +p_, & + p\?
Hkw) = 22 +2 nelbw) + | ———=} zmlk
Hilko) = T2 Hillkw) (ﬂ )x(w} ©

where & is the energy density.

In the low wave number-low frequency limit, the correlation function
composed of the transverse component of the momentum exhib_i:s a‘d‘iﬂ'u.
sion structure with diffusivity, Dy = n/mn, given by the viscosity !:Iumsled
by the mass density. The correlation functions above also have a diffusion
structure but here the diffusivity is the thermal diffusivity, D, = x/mne,.
They also exhibit the damped sound wave propagation. The total weight
of yfew is n(énjép)r of which a proportion (1 — c,fc,) comes from the
diffusion process and a proportion ¢,/c, comes from t{:e sound propagation.

Note once more that the hydrodynamic analysis is only correct in :he
limit as k — 0. Thus, for example xy behaves asymptotically in o & ink?je
while rigorously zr behaves like w” for all k.
It derived in 1934 by Landau and Pfla-
using equation (4) we can determine

(which vanishes as k — 0),

Eq. (4) is an old and famous resu
czek?® and depicted in Fig. 17. Indeed,
by measuring y.(kw)/w, for small k and small w,

on\ & _x  E+GIY )
F.U.)r’ ¢, mnc, mn
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Fig. 17, The characteristic Landau-Placzek expression for tmlken)fes imvolves a Bril-
louin doublet (w = #¢,k) and a central peak. The widths give the damping of these
modes; the total intensity is given by n(gnfap)r and is exhausted by the two peaks whose
relative intensities are (cy/c,) and [1 — (cafc,)] respectively. The central peak would be
replaced by a central doublet in a superfluid,

In addition since #~* [ dw wyli(ke) = mnk? we could determine mn. If we
also measure y!/(kw)/w for large k, so that we have the instantaneous
correlation function

oy [P0 zk) do
Sl = 0) = [ 2 i) & ®

we can also determine in a classical system with a known interaction poten-
tial, the energy and pressure, and therefore the specific heat. The quantity
(én/0T), can be determined by measuring .. as a function of T, and
the only remaining parameter, #, can be determined, as we saw in Sec. C
from y5(kw).

To state this result more theoretically: all thermodynamic and hydro-
dynamic parameters of a classical fluid as well as most other measurable
properties can be determined by measuring (experimentally) or calculating
(theoretically) the function yj,, (ko) or S,,, (kw). (In a quantum fluid, a
measurement of the specific heat and pressure would also be necessary,
since the kinetic energy density and kinetic pressure are not just 4 nkT and
nkT.)

The function y(kw)/w is an even function. Therefore S,.(kw) is appro-
ximately even (j.e. it is even when fiw € kT). The function y2(w)/w there-
fore has two peaks at w = +e¢,k (a Brillouin doublet) and a central peak.

Also, since
2 -1
o o NN ®
¢, mn“c, \dT'/,\dp/r

at low temperatures, the central peak is vanishingly small. Typica]l?
it behaves at (7T p,,,.)* for small 7, At T = 0, the doubletin 3" at w = Lew
(with (dp/dn); = me® and wy(kw) = nk*x|w|d(w® — ¢*k*)[m) exhausts
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in the long wavelength limit the sum rules

limfﬁ.;(i‘ﬂ)@”(du)
T

—
k=0

and ©o dp
" d&] ?]ka
Imkw)w — = 22
J. (kw)ew - —. (10)

The opposite extreme occurs at the critical

4 : . ough the area u

pea_k increases and its tail tends to swamp thchrillouin peallclsdftl; Lf;f c\::it:;,l
which depcndsl on x/mnc,, is reduced because ¢, is increased. The behavior
of the correlation function in this region has been the subject of intensive
study ‘recently®®. Likewise the behavior in critical mixtures, which also
show increased scattering and slowed diffusion, has been recently investi-
gated, (See Fig. 18.)

Fig. 18. The same Landau-Placzek formula when n{gn/dp)T - co near a critical point
and D; + 0.

Implicit in the above discussion has been the assumption that the beha-
vior near T is dominated by the zero in (3p/dn);. While this assumption
is born out, (dpfdn); ~ (I' — T,)” where y ~ 1.3; it is not unity as it would
be in simple theories. Likewise, it appears that while x and c, are not regular
at T., they do not diverge very strongly. The experimental evidence seems
toindicate that ¢, ~ (I — T) “where & ~ .1, % ~ (T — T)™* where 7 lies
between.l and .7 but the results are not definitive. The weak singularities
may also affect the position of the Brillouin peaks near T, (the velocity
of sound), but the attenuation, and the dominance of the central peak

makes this difficult to discuss. Lo
Like the function y;(kz) we discussed earlier, the function ¥, and the

related function y,(kz)

mAz* yukz) = kg (kz) — nmk?* (11)
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may be studied outside of the hydrodynamic regime, that is, for wr > 1 and
ki 1.1n a rare gas, the transition occurs for relatively small k. For larger k
the behavior is again free-gas like. In particular

galko) _[xlnd P10 |
w [2} ku”p[ 2(:«;)_—, 2

For the rare gas it is possible to interpolate between these limits using the
Boltzmann equation with different force laws, and various other approxima-
tions. In Figs. 19-21, are plotted theoretical curves showing how the transi-
tion takes place.’® Also plotted for comparison are some experimental
studies in the Brillouin region and the transition region,3?

In an isotropic solid one can also study y;'(k)/e in the nonhydrodynamic
regime, and, at sufficiently high frequencies, one finds behavior of the same
form indicated for yj/(kw)fw. Actually the situation is considerably more
complicated; there are various regimes®* depending on the curvature of
e (k) with k? as well as on the parameters wr and fefkT.

There is also a particularly interesting domain in the isotropic solid when
the temperature is low so that the phonon picture is approximately valid
and the non-momentum conserving urmklapp processes unimportant. Under
these circumstances, a kind of hydrodynamic picture is applicable for
wt, > > 1, in which the energy current (which is essentially, the momentum
density times ¢?) is conserved. One then has, whenwr < < 1, essentially a gas
of phonons in the hydrodynamic limit.*® For this gas of phonons the
pressure is § the energy density so that we may write

ae__ i = Vol z_fj
Y V-j V.ctg v 3 €. (13)

Sun (k)

L . I L
02 04 06 0B W0 12 18
T

Fig. 19, Sp,(kw) for various values of wave number & times mean free path, 1.
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Summary: concepts, tools, and procedures to know

Concepts and Tools

660

In quantum world statistics automatically introduces a correlation due to
exchange. To this, a correlation originated by the interaction between the
particles is to be added.

Exchange has negligible effects whenever the single-particle wavefunctions are
not overlapped and is quite effective when the particle wavefunctions are delo-
calized, as in crystals and especially in metals.

The quantity ng(r,r’) can be viewed as the particle density which would be
observed when sitting on the particle at position r.

The density profile ny.(r,r’) can be viewed as a hole that is dug in by exchange
and correlation processes between the system particles, leading to screening of
the interactions.

6 Correlations and Density Functional Theory

The adimensional parameter r; = ro/a, measuring the system density can
be identified also with the system coupling strength.

The excess energy due to exchange and correlations modifies both potential
and kinetic energy. This is a purely quantum effect, whatever the statistics
of the particles might be.

Inclusion of the exchange term works to keep the electrons far apart because
of the Pauli exclusion principle and therefore lowers the energy. This effect is
expected to become progressively negligible while the density lowers.

In metals spatial correlation effects are relevant and are to be treated to some
extent together with the spin correlations.

Exchange and correlation effects are connected to screening. The quantity £ is
a measure of the number N; of induced charges contained within the screening
sphere with radius R;. In an insulator N; < Z, whereas in metal N; = Z implying
gy — o and Ry — oo,
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e On quite general grounds, Hoehnberg and Kohn theorem states that a one-
to-one correspondence exists between the density n(r) of an interacting sys-
tem and the external potential V,(r) acting on it.

e According to the Kohn and Sham scheme, the interacting system can be mapped
onto an equivalent and effective non-interacting one, characterized by an effec-
tive single-particle potential.

e DFT and response or dielectric function theories are strictly connected: DFT
effective and xc potentials calculated at the local density are related to the re-
sponse function of the real system and to a Kohn and Sham response function
built up from fictitious single-particle orbitals.

e V..(r) is a good approximation for the xc energies and the DFT results are in
general more accurate and realistic than those obtained within Hartree-Fock
calculations.

e A unified theoretical framework exists to treat the dynamics of a weakly
inhomogenous normal and super-fluids, that is derived from a formulation
of DFT in terms of currents and with the use of general considerations
such as Galileian invariance, conservation laws and time-reversal symme-
tries. Explicit calculation of the microscopic current response in the ho-
mogeneous system leads to equations of motion for the currents that are
formally equivalent to Navier-Stokes equations for a normal fluid and to
Landau two-fluids equations for superfluids.
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Procedures
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e Write Local Density Approximation for the nonlocal Hartree-Fock exchange potential
[ladonisi, Cantele, Chiofalo p. 620]

e Write closed set of Kohn-Sham equations, given H

e Write the analogue of Kohn-Sham equations in the case of current-density functional theory

e Write Navier-Stokes equations from current-density functional theory [Vignale, Ullrich,
Conti, PRL 79, 4878 (1997) see http://arxiv.org/pdf/cond-mat/9706306.pdf]
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Proposed exercises
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e Quick Questions, Examples, and Problems 6.2-6.5 and 6.8-6.11 with solutions in Ch. 6 of
ladonisi, Cantele, Chiofalo [ICC]
e Study the papers on applications of either DFT or TDDFT to different systems:

1. Ullrich and Vignale, Time-dependent current density functional theory for the linear
response of weakly disordered systems
From <http://arxiv.org/pdf/cond-mat/0201483.pdf>

2. Dowload Baym and Pethick, Ground-state properties of magnetically trapped BEC Rubidium
gas, http://arxiv.org/pdf/cond-mat/9508040.pdf. Use eq. (4) or (12) therein as
approximations for the equilibrium densities of a BEC of Rubidium atoms in a harmonic trap,
and calculate within LDA expressions for the energy per particle of the inhomogeneous gas
and the compressibility

3. P.Pedri(Orsay), S. De Palo (Trieste), E. Orignac (ENS-Lyon), R. Citro (Salerno), M. L. Chiofalo
(SNS Pisa)
Collective excitations of trapped one-dimensional dipolar quantum gases.
Journal-ref: Phys. Rev. A 77, 015601 (2008) http://arxiv.org/pdf/0708.2789.pdf

4. S. De Palo, E. Orignac, R. Citro, M. L. Chiofalo, The low-energy excitation spectrum of one-
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Concepts
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¢ Dictionary between Green's functions and response functions. In particular:

1. Single- G;[two- G;]particles Green function describe the propagation of a disturbance once
one single [two particles in sequence (add two and remove two, add and remove two +add
and remove two,...)] is [are] added or removed to or from the system at equilibrium. Similar
concepts hold for higher-order GF (from now on only G; and G; are considered)

2. G; and G; satisfy the same boundary condition in imaginary time, which leads to the
definition of advanced and retarded Green's function, to the analogue of the fluctuation-
dissipation theorem, and the definition of the single-particle and two-particles spectral
functions as the Fourier transforms, from time to frequency domain, of the imaginary part of
the response function

3. Inthe case of free particles, the single-particle spectral function A(w)~&(w) is a delta in
frequency/energy and the two-particle spectral function is zero. In the interacting case, the
two-particle spectral function I'(w) represents the microscopic expressions for the finite
width of the lorentzian-shaped (no longer delta-function shaped) single-particle spectral
function of a damped harmonic oscillator, as driven by dissipation (damping) processes

4. Information contained in the Green's functions:

-- The single-particle spectral function A(w) represents the weight with which the average
occupation number f(w) of the normal mode with energy w enters the particle-number
counting

-- A(1f)/Af=e~F(@~1) js the detailed-balance principle

-- From the partition function Z=tr[e P(H-#N)]=eFP2, the average energy
<H>=QFT[(w+p?/2m)f(w)A(w)/2], the average number of particles BN = dInZ/du and
average density n containing A(w), the pressure P fromn = d P/du|g, and the correlation
energy fromadInZ/dA = —B <V > can be easily calculated. In essence, once A(w) and
M(w) are known

e An imaginary-time response function can be defined , whose Fourier transform in frequency
domain corresponds to the real-time response function, where the corresponding spectral
function is the difference between the advanced and retarded components of the
frequency-FT of the imaginary-time Green's function

¢ The single-particle Green's function satisfies a self-consistent equation of motion, whereas
the G,
appearing in this equation can be replaced in terms of G, since schematically an out-of-
equilibrium Green;s function can be defined in the presence of a perturbing external
potential U coupling e.g. to the density, so that the functional derivative relation
$i6G1/6U=i[G,-G1G1] holds in terms of the external potential U coupling to the density (in
this case, generalizable to other situations).

e Approximations for G, allow to solve for G;, calculate the response, and from the response
calculate the transport properties, as long as it has been done within the response-function
theory. More efficiently, a technique to consistently derive approximations for G; is by
iteration: in the self-consistent equation formulated only in terms of G; , the non-interacting
Gois first introduced, from which a new single-particle G is calculated and updated, and so
on. This technique can be visualized in terms of diagrams expanding in powers of the
interparticle interaction potential V.

¢ Alternatively, the concept of self-energy Z=651 — G 1is introduced, which contains all the
information on interactions and which satisfies the usual boundary conditions as the Gs. In
essence, N(w)=X" (w) + £<(w) (the plus and minus signs for Bose and Fermi particles)
relates the two-particle spectral function to the advanced and retarded self-energy, in much
the same way as A(w)=G"(w) + G=(w) relates the single-particle spectral function to the
advanced and retarded single-particle Green's function. X<(w) represents the collision rate
after adding a particle to the system. Finally A(w)=r(w)/[(w-E(p)-Re Z(w))?+I(w)?/4]

¢ Finally, average particle, current, and energy densities can be defined in terms of Green's
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functions with corresponding conservation laws in the slowly-varying variable limit: the
conservation laws of hydrodynamics are recovered as a hierarchy of side-to-side functionally
differentiated equations, stemming from the lowest-order one, that is the continuity
equation.
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Procedures
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e Derive the boundary condition for Green's functions and self-energies

e Express the physical observables in terms of spectral functions

e Write the equation of motion for G; both in terms of G, and in terms of £

e Operate the iteration procedure to derive approximations for G via functional differentiation
e Express approximation in terms of diagrams

¢ Link imaginary- and real-time Green's functions

e Express conserved particle, current, and energy densities in terms of Green's function G;
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Proposed exercises

domenica 14 giugno 2015 08:39

e Study the following examples from Haken, Quantum Field Theory of Solids. An introduction,

North Holland (1976)

“ G(m g TUNC UVl

.plane. Regarded as a function of ¢, functi
lex ",:: ¢- plane. This pole consists of a real ;:tﬂ (38.18) has a poje iy
L4 por™? e L. part &, and ap imagina
e of he esproalof the hi-ime 3 e g s
ot rive at the basic interpretation: the pole (or perhaps the 6). In this

v e poles) of the
I |
‘;mak“ -plane
l Ree

[
* Fig. 56
The poles of the Green's function Gui(e) in the complex ¢
R (encrgy) plane.
-|l -

Green's function G (c) determines the energy and lifetime of the particle in
preraction with its surroundings. As these interactions may lead to a com-
gletely new excited state, which has little to do with the original state of a
hbes. 3Tl T Tgueos partichs™ in thic case TGt .
. ;n:gyrmﬂ be taken further. For there are cases (e.g. plasmons, cf. §27),
shere it is not necessary to add a particle to the system to create excited
sates that have all the appearances of a particle moving through |hc system.
We came across the simplest example in §8, ie. the phonon which moves
trough the lattice as an excitation quantum. . .
Let us briefly see how to define G, (1) directly, u?t:houtcﬁun‘f Engc.; ﬂ
the way round via the Fourier transform of the original Green

Gix, 1). Let us assume that this happens via

(38.19)
Gu(1) = —i(HTax(n)ai (P> .ok
i 1 wavea, &

The proof is casy if we expand ¥ +(x, 1), V(x f)as a series of plane

| T
i = (i) =t
yla, i) ; b l/i,'
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nctions and their solution
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e to be made

§39 Examples of equations for Green's fu
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Green's functions look like
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§39 Examples of equations for Green's functions 271

in order to solve them.

The first case is that of the many-electron problem in a solid and the

second that of the interaction of an electron with lattice vibrations and thus
especially to the polaron.

Example 1. The equation for the Green’s function for the many-electron
problem. Our aim is to obtain an equauion for the Green's function defined
in the spztial representation by G(x, £; ', ') = — i< T (x, D¢ " (x', () ¥)
(see (38.10)). The simplest method consists of applying the equation of
motion for the annihilation operator W(x, r). We have already derived the
equation of motion for the annihilation operator, in §16, for the case of an
example of the Hamiltonian operator of the many-electron problem (see
equation (A16.15)). So as not to have too many terms, and also to take
account of the translation-invariance of the problem from the start, we
shall leave out the lattice potential ¥{x) and assume this to be justified in
the light of the effective mass method (cf. §18). Thus we base our argument
on the following equation of motion

SOy )k 1
h _{ = J}dr(x, 0+

2
+ [V D VDY D (39.1)

Let us multiply tiss equation (39.1) from the right by the operator
v' (x', ¢'), apply the time-ordering operator T from the left, and form the ex-

" pectation value with respect 1o a state & (which we need not yet specify more

closely). We then obtain
ih(o| ri'-’%?'—’ v, ey =

2 S A
s - 2" o e I Tyin e 0¥,
m

+ J. £ | (@I Ty (7, DY lx", DY (x, DY (X' Meydx” (39.2)
jx" —x
i : tion, w { course, take the
btain an equation for the Green's function, we must, 0 . ;
:,u?d:) outside the expectation value. This actually concnl:ll ;hgi_ﬂ dif-
ficulty which can easily cause us problems. So as not 10 fall Imto this trap,
we wite G(x, £;x, ') in 3 way that expresses the T operator in terms of an
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“ordinary” c-number function. To this end we use the step function
O(t — 1), which is defined as follows

1 for 1>r
e(-1)= ;
k) {0 for 1<t 23
Then the 7 product may also be formulated as
TY(x 09" (&, 1) =y (x OY* (x', 1O -1) F (39.4)

Fy &, O¢x, nNDe00 -1

The minus sign applies to Fermi operators ¥, the plus sign to Bose operators.

As comparison with the definition of a T operator shows (see (35.6),
(38.7)) (39.4) and (38.6), (38.7) do in fact agree. To obtain a rule for
taking the derivative of G with respect to time, let us form the expectation
value on both sides of (39.4) with respect to®, multiply by —, and differ-
entiate with respect to time #:

a B i a"(xo‘) - . - NI
;06X 1) = '{@l—a, VL0881 -1)F
Fcol o D 19y6( -0+
+<ow(x.r)¢'(x',r')w>%eu-r):

(O (x, W, :)m%e(r—r)} 5)
Using the 7 operator, the first two terms in (39.5) may be written in the form
— i@l r””;;‘) v (x018) (39.6)

1

To transform the last two expressions in (39.5), we will use tl'xc l'?ct_ well
known from mathematics, that the derivative of the step function is the é-

function:

a ;
—O(=1)=6(~-1)
! (39.7)

a p v
= —f)=~8(1—1t
5 00— (t=1)

After regrouping, the last two sums in (39.5) then take the following form:

— G QY L) TR e e sou =) (398
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§39 Examples of equations for Green's functions 73

. in (39.8) is the anticommutator
ssion in the curly brackets
?pu:mt:)e ::: p'_:c commutator (Bose) of ¢ and ¥*. As it is followed by the

function &(¢ — 1), we may equate the two times ¢ and . In line with the

i .8 12.15), this reduces the expression
usual commutation relations (13.8) ordgmty bt Sl 1. A

fly brackets to an or ! .
::tw:orc:ug:co?u{e normalization of @, the remaining expectation value
(@|®) is equal to one, (39.8) takes the simple form

—id(x—x)o(t—1)
Combining the first two terms of (39.5), given by (39.6), and the last two
terms of (39.5), given by (39.9), we finally obtain

% G(x, t;x', 1) = —i{®| Tﬂ;—’%’lw‘(x'. O)e)—  (39.10)

(39.9)

—ib(x—x)o(t=1)

Let us now retum to the original equation (39.2). Multiplying this on both
sides by (i) and inserting (39.10) into its left-hand side, we obtain the
final equation
":. 4.G(x,1;x',t')—
2 (39.11)
=1 J' ——— G(x", £; x", 1 = 0; x, 1; X', ) d°x"

|x"—x|

ih%G(x, X, 0) = ha( = )5(x' = x) ~ 5

Here we have used the abbreviation
l G(xy, 815 X2, 12} X3, 13 Xg, 1g)

=P TY* (x4, 1,)¥ (x2, 1) Y (x5, L)Y (x4, 1))
As the time-ordering operator has been used in equation (39.11), but as
equal values of time ¢, =1, =t should really be used, 7 — 0 has been taken
as one of the arguments, so that the correct order of the operatorsy * ¢ is
maintained. Equation (39.11) represents rather a blow to anyone who
th.u.zghl that the use of Green's functions had solved the problem. We
o:ngmlly wanted to derive an equation for the Green's function Gix, 1;
x', 7). But we have succeeded only partially as we were forced to introduce
a more comphc'ned Green’s function, i.e. (39.12). For this we have to derive
a further equation, which is, of course, perfectly feasible. This new equation,
how?ver. contains a Green’s function with 6 operators. The method may be
f:mtmlfed ad kb, producing a whole hierarchy of equations whose solnﬂon
is no n‘mplfr than that of the original problem. We must, therefore, turn to
approximations. Before discu: ssing the latter, we shall consider a ca;a which

(39.12)



s
pe solved exactly.!)
‘ cles without Coulomb interaction. In this case the last term of

zﬁ"‘ (39.11) vanishes, so that the equation takes the following form:

x, ! ih L,
5_@1%{'—5—-—)* e Ar O X 0) =i —1)s(x—x)  (30.13)

ks the inhomogeneity ~ (1 — 1) 8(x — x’) depends only on the difference
perween the co-ordinates, we put

G=G(x-x,t=1) : (39.14)
Tosclve (39.13). let us write G as a Fourier integral:

Glx-3.t=1)= ﬁf If Gk, £)e®E-—x)-istt—1) g3 4o (39.15)

Letus also expand &(t — 1')é(x = x°) into a Fourier series

jt-Ndlx-x) = ’(5154' ” gkl===1=kte= g3 | ge (39.16)
We substitute both expressions into (39.13). Let us recall that
4 i _jppia (39.17)
dr
(39.18)

A e = — k2
Tiking all the terms of (39.13) to the left gives

: - . ih IR P
E“}r.”:'uu-:|-w—r>a{5(k,t}(_w+E;Fk:}]_'Tﬁ)_f}d ’:g_w‘)’

pendent of one another, the

As the i i linearly inde,
exponential functions are linearly Lf the integrand is identically

¥fihand side of (39.19) can become zero only

2210, This gives
39.20)
U —— (
ko 2r) e—&
¥iere we have written
K22 (39.2!)

_—
 Thote lew familiar with mathematics (especially Fourier ";’:?“’“"""
Georem) may safely skip this example and continue on P- =16
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Substituting (39.20) into (39.15) gives us
) , 1 eil(l—l'l—iﬁl‘-l'l ikd 39 ‘l‘))
G(x—-x;:-f)=(2x)‘ -” s kde (39.22

It seems sensible to evaluate this integral by means of the residue theorem.
This introduces a difficulty typical of Green's functions: the integrand has a
pole atg =g, i.c. a singularity on the integration path. To remove this
difficulty, one adds an infinitesimally small imaginary quantity +J7, y > 0 to
. For reasons which will shortly become clear,

the denominator: ———
£e— &+ iy
we shall choose the positive sign. Let us consider
J ;d’:. (t=1-10) (39.23)
E—gy + I

-

To be able to use 1he residue theorem, we have to close the contour of
integration at infinity, and the integrand should make zero contribution
there.

1) for7 =1—r' >0 we shall close it over the lower half-plane, as then Ime <0,
i.e. the real part of the exponent in (39.23) Re{ —icr} <0 (see figure 57).
The pole ate =g, — iylies within the surrounding contour. The residue
theorem then gives

.f-'“df_ =DmieT it T o Yot
fz-s.-riy 2mie ?:0 Irnie (39.24)

2) fort = t-t' < O we must close the intecration path over the upper half-
plane. As no pole is surrounded by the coniour, the residue theorem givess

=0.
Thus we have satisfied the condition

Gx.r:x,ty=0 for 1<t (see (38.2))  (39.23)
From the method of integration (choice of sign for iy) one can see that

equation (39.13) does nor include condition (39.25), but that this must be
added expressly. Using (39.24) and (39.25), we obtain

Gu—.r':r—r"i=—-,i Iﬂ""""“-""'d’k >0
(2r)? (39.26)
=1 r<t’
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Fig. §7 Applying the residue theorem.

Let us now compare our result (39.26) with (38.1) and (38.2). This shows
complete agreement (so long as we bear in mind that in §38 we used a
Fourier series, and that here we wsed a Fourier integral: this is solely a
question of the region of normalization, and it has nothing to do with the
physical principles or the formalism). In spite of this agreement, our problem
#till contains a stumbling block (see exercise 1).

But now let us return to our general equation (39.11) with Coulomb inter-
action:
The Hartree approximation. To solve equation (39.11) we shall need to
make some approximations typical of the theory of Green's functions and
completely equivalent to the original Hartree approximation (or the
slightly more general Hartree-Fock approximation). For we shall resolve the
Green's function referring to 4 operators into & product of simple Green's
functions of the form (Hartree approximation)

G(xy,1y; X3, 125 X3, 13; X4, 1g) =2 G(x3, 13} Xy, 1,)G(x3, 1y Xa, £e) (39.27)

or, in abbreviated form:

G(1.2;3,4) = £ G(2, 1)G(3, 4)
The upper sign applies to Fermi operators ¢, ¥, the lower one to Bose
operators. Let us substitute approximation (39.28) into equation (39.11).
Bearing in mind that
Glx 1 —0;x,0) = £ i@ (x, D¥(x )| 3929
=1 f@{xo ‘) (ﬂ(xl ‘) Pm'de dcnsily)

(39.28)

we obtain

. 0G(x,1; .'I",r) __ﬂl 1 3 nefl'".l) Gix, ; x.00+
,ﬁTn{-—zm_d.d-c | d°x Tr—x| (x,5x,1)

+hé(t—1)8(x - x) (39.30)
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Th; operator in the curly brackets on the right-hand side of equation (39.30)

is of the form:
Kinetic energy + potential energy of a charge e in the field of the

charge distribution eg(x, ).

the Hartree method;
be salved by an iterative method very similar to :
ﬁks:::fye :?(x, £), then use equation (39.30) to calculate G, derive a new

value of ¢ from it using equation (39.29), etc.
The Hartree-Fock method. Here we use the following approximation:
6(1,2;3,4)=£G(2, 1)G(3,4) - GB, 1)GQ2, 4)

We leave it to the reader to substitute approximation (39.31) into (39.11)
in a manner analogous to that of the Hartree method and to discuss the

resulting equation.

(39.31)

Example 2. Interaction of a particle with lattice vibrations. While in the last
example we considered Green’s function in configuration space, we shall
now derive the equations of motion of the Fourier transform of the Green’s
function. We are thus looking for an equation for the Green’s function Gy (1)
defined by (38.19). In principle we may proceed in a manner very similar to
that used in example 1, starting with the corresponding equations of motion
in the Heisenberg picture. For the case of interaction between an electron
and the lattice vibrations we have already derived the equation of motion for
the .phunun operators in §16. Similarly we may formulate ecuations of
motion for the electron operators. Since we shall shortly need to use all
these equations, they are given here for simplicity in their explicit form:

dy = —igeay — i ta, . -
s x Oy gs h-wby, — i g&-b:al:-n- (39.32)
. = —iw,b, —i h
. » '{, g.ayay,, (39.33)
bl =iw bt +i M
g Erai,na, (39.34)

-
f:u::?:: fggﬁ)c: thf obvio}.. starting point for the derivation of an
(39.32) from the &1;‘“‘3&:& To this end we multiply both sides of
operator T as well as by —. %(f) and from the left by the time-ordering

Finally we sha)l .
find the Xpectation value with reference to a state ¢; we



all use the vacuum state for @. We then obtain

"dGw - —igs G — idan. St —
T 16 Uy 10k 6(’ ”)- Z gi.-Gl-v.-.l‘— Z g.G;,.¢ e

Jhere we have written (39.35)
Gk = —i{@| Tay(a; (") ¢> (39.36)
Gr-wowr: =PI Tax_ o (Db (Na} (1) ) (39.37)
Gunswa =CPIThL(Nay, L (Nai (1) ) (39.3)

The fact that function (39.36) arises is, of course, just what we should want
On the other hand, we have once again been forced to introduce nev«;
Green's functions, i.e. (39.37) and (39.38). We could now try to resolve
the functions (39.37) and (39.38) into products of simpler Green’s functions,

eg
Gi-wwte = P Tax_ o (N)ai. (1) PHLP|bL (1) P) (39.39)

It can, however, easily be proved (see Exercise 2) that, for the vacuum state
,, (39.39) vanishes identically. This would imply that the particle moves
only as a free particle, as the additional terms in (39.35) describing the
coupling between particle and lattice field are identically zero. 1:he exax'nple
shows clearly how easy it is to make mistakes in the use of Green’s fu{lct:qm,
and that we need a considerable “feel” for the physics of the situation
when using them. There are in fact cases in the literature where thc.: ;vr(tmgf
spproximations have been made, particularly with regard to lhﬁ Wa)m; ;’L
tation has been carried out. The last thing we et to do is ?the ight
readers, and we only wish to show that with a little care (v;/e 5:,5 Sntioks
uswer. To this end we shall now derive equations for ﬁ'?m dn:;at

(39.37) and (39.38). Let us differentiate (39.37); then we

dar (0L 2
%Gz—-.-,l' ={(P| i an--(’)b-(')‘" ) (39.40)
4 (| Tip_w (DA™
b (@i ()92
+{(P| Tap-w(1) & aning. It s meant 10

bolic m i
Here the expression dT/dr has 2 pritey sy“;bserved during the differenti®
indicate that the order of 7 and ¢’ has 10 be We shall derv® eh i
Uor and thot thic sesults in an additional term

temin Exercice 3. 1t follows that

ntia-
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§39 Examples of equations for Green's functions 2

dT
I w6 (Dal (1) = 6(t = 1) [ay -, (1) 5o (1), a}: ],
=3(t=1)b, ()04 4o (39.41

lA;\par.t from the first term in (39.40), which we have just stated ex
phc‘ttly in (39.41), two further terms appear in (39.40). To calculate these we
shall substitute the right-hand sides of (39.32) and (39.33) for @ and b res
pectively. This gives the following expression

d

g7 Oa-wwar =1+114+111 (39.42)
where the individual terms are given by
I= (1 = 1044~ o PIbL(D) D) (39.45.1)
= (OIT{-itr-uOh-u—i ], 88 0k-n-wbo (39.43.11)

=i ¥ 8wbiti-wewhib () al(1)®)

M= (B Tay o) —iwgby—i ¥ guai-ay-suhai (t)®) (39.43.10
&

We will show in Exercise 2 that (39.43.1) vanishes. (39.43.11} contains 3
different expressions between the curly brackets. The first may be written in

the form
—itk-wOi v (39.44)

The second expression in the curly brackets contains a phonon annihilation
operator b, Which later meets a second phonon annihilatior operator. Thus
phonon annihilation takes place twice. The annihilation process is connected
each time with a coupling factor g, . If we restrict ourselves to the lowest
approximation in the term ~gZ, this expression may be left out. The
expression deriving from the last term in the curly brackets also vanishes, as
the operator b] gives zero when acting on @, to the left (see exercise 2). The
whole expression (39.43.1I), therefore, reduces to (39.44) Lastly, let us
consider expression (39.43.11I) and again consider the expression in the curly
brackets. Apart from the factor —iw,, the first term again gives rise
to the Green’s function (39.37). Let us now look at the second term in
(39.43.11) which consists of & sum over operators of the form

Gyl W) da wii)ean ) (39.43)

Using the usual commutation relation for Fermi particles we may revers¢



280 VL Green's functions

the order of the first two operators, obtaining
6.~,._.a.--..(r)a.’-m—a.‘--(t)a.-.(t)ar-..(t)a.‘-(r’) (39.46)

Let us remind ourselves that (39.45) and (39.46) are acting on the vacuum
state, and now let us consider the effect of the second term in (39.46) on
?,. F-mt of all an electron is created. Then, however, two electrons must be
annihilated; as, however, only one is present, applying the corresponding
operator to @, must give zero. Expression (39.45) has thus been reduced to
the first part of expression (39.46) and contains only the two electron
operators that appeared in the original definition of G,,.. These somewhat
involved arguments show that expression (39.43.111) reduces to

(394311 = — i, Gy .. o.s +8.Gur i

Let us now summarize our result. We have derived an equation for G, "
given by (39.42). Evaluation of the separate expressions I, II, 111 leads to the
following final result

d
Gt Or-ven = ~He e + 0)Gho ke + 8.6 (39.48)

It might seem that we still had an equally tedious task ahead of us if we
wished to derive the corresponding equation of motion for (39.38). But it
can be shown, in a manner analogous to that used in exercise 2, that
(39.38) vanishes, at least for a state which no longer contains any phonons,

Goaswn =0 (39.49)

Our task, of finding & closed system of equations for Green's functions, is
complete. Using results (39.48) and (39.49), we may write these two types
of equation as follows:

icd—:"" = =ity Gy — 104y 6t = 1) = T g2Ch-mm (39.50)

d (39.51)

E Gh--.-.h' - —-l'(l.-' + m-)Gl—..v.l‘ + !-Gn'

ol 9.50), (39.51), it seems appropriate, by analogy with
lThoe ':r,l:h?;!u.:‘ mus(esd w) li!vc tlzc equation for the force-free 'pam'cle
(39.13), to res .t to Fourier transformation. This u_rﬂl be discussed in more
detail in Exercise $, but we shall first show by 4 different and more direct
method that an electron in interaction with lattice vibrations really can be
described in terms of a new displaced energy 'lnd a damping constant. L;lslg
here restrict ourselves to t > ¢ and to k=k'. In this case equation (39.50)
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contains the inhomogeneity ~ (1 = =0, md (39.50), (39.51) represent
a system of homogeneous linear equations with constant coefficients. I j
well known that to solve a system of equations of this load, we substitute

exponential functions for the unknown functions:
Cun= ™™ (39.52)
Ga-wowt =Dy we ™ (39.53)
where ¢, y. Ci, Daw are constants to be determined. Substituting (39.52)
and (39.53) into (39.50) and (39.51) gives

(—ie—y)Cyp= —igg Cy — Z geD, . (39.54)
(—ie =)Dy = =it + @) Dy + £, Ci (39.55)

Equation (39.55) enables us to calculate D, ,,

8w Cl

Dy, =— - -
b e~y +iey_n + iy,

(39.56)

Substituting this into (39.54), C,drops out of both sides and we obtain the
equation

. 1

e—iy=¢g — —_—

1= g!g ,~c+ Y+&_ o+to, (39.57)
Equation (39.57) is an eigenvalue equation for (¢ — iy). Since (¢ — iy) also
appears fn the summand, it might be difficult to determine (c — iy). If
Wwe restrict ourselves to small coupling constants |g, |2, however, then it
Seems appropriate to solve equation (39.57) by iterative methods. To the

zeroth approximation, we may omit the summ i
g ed terms in (39.57) altogether

£ - &

¥Y¥=0 (39.58)

Our next step is to Put £=g, in the i
- summand. By (39.58), we might be
tempted to put y =y =0 bdut further analysis lh(fws thz! this l‘ihd-‘ o

contradictions. Let ys therefore, leave
i > s unt,
by virtue of (39.58), conslder the umm;g c':“;?;d_.fg the moment, and,

“l)‘-ﬁg—limz 1812 1
by 8! 39.59
a0 & —Gtby to Tl ( )

T ;
O evaluate the sum in (39.59) further, we shall transform this into an
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integral. We know (cf. (29.27)) thgt the couplln.
the volume of the crystal ¥ as g, ~ WV . Let """hmﬂ::'(ln"emp:r depend on

! 0

Ew ™ T Bw

Vv (39.60)

As the sum s taken over wave vecors

(o (3027))

I ¢ 1\* s
vEz) |

Let us evaluate the integral thus formed

s the following relation holds

! 18212 d*w
P )™ e tatoct iy (39.61)
fory'® — Ousing the expression
1 1
] =P —ind(§ -
LISl SR e

where P is the principal value. Substituting (39.61) and (39.62) into (39.59)
and separating the real and imaginary parts, we obtain as final result:

1 3
' rcr,__'_.,P 12212 ——————d*w 720 &1
—ty T ik W

e {—')r flg?.l’a(—e. +anto)dw (39.64)
- J

We have already met results (39.63) and (39.64) in the context tho!"per-
turbation theory. We found for first order perturbation t?fc:ywiu: L;:
tlectron is scattered from the initial state & lgy.mtel;ch:nom_ it
attice vibrations — here, more precisely, by the ‘m"f"‘l’l“(;%‘)' Note that
I transition probability per second given by °"P'°s:° 1;0 thermally ex-
fe present case should be considered to be a special one, 39.63) in §35,
ited phonons being present. We slso me” expresi.l(;: (rc;ent example
vhere we calculated the self-energy of the polaron. P

i the
mphasizes the great advantage of using Green'’s funcuons;dts e:v:n s;\tvh ignm&
st section, we really are able to calculate the new energy

ike to go a little
ime of the excited states in one go. Readers wtl:: t‘fcv)(l,l‘:::i:s:xercises.
eper into the problem are recommended to try
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§39 Examples of equations fur Green's funcuons 263

Exercives on §39

L. Evaluate (38.10) for free particles, f.e. ¢ ® Voo V' ™ g but use the n pas-
tide state (ur @ 1 G(x;, 13,%,, 45) = 0 still valid i <y?

2. Show that b (1)@, =0 (@, vacuum state for electrons and phonons).
Hint: Put b, (1) m e™W'p_¢~ VMM 4nd expand the exponential function on the
right into a power serfes

Polnter. H" @, w0. Why?

Likewise prove that < @, (b (1)®,) =0

3. Prove (39.4) ),
Hint: Perform the manipulation corresponding to (39.4) and the equations
following it.

4. Find the roots of equation (39.75) graphically by determining the points of
intersection of the line f(z) = ¢ with

JO=u-Y 15,7 _

e+ byt W,
It will be enough to take only a few terms of the sum to illustrate the point.

5. Solve equations (39.50; 51) by Fourier transformation

+o

i -10-r) (A39.1)
Guulr =) m l/Z—H J’ Cu()e an
Ga-viws = L | Dy (@)™ " g0 (A39.2)

"o

L

Hints: Substituting (A39.1), (A39.2) together with the Fourier representation
of thed(r - ¢')-function into (39.50), (39.51) leads to the following equations

G-+ Y gD, (@)= — ——
) V=
Dy (@) (ta-v+ 0, — Q) - g Co(2)=0
with the solution '
1

1 - 1
= — f@)=Q-t+ T g fm |
Ve Ll ey

Use the residue theorem to evaluate (A39.1), (A39.2) and prove that the
equation for the poles Q,: f(£2,) =0 is identical to equation (39.57).
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Ordering and symmetry breaking

¢ The dynamics of any system of particles/spins is determined by an H that is invariant under transformations in
some group G. [Examples. For a gas, this group includes time translation and reversal, and the Euclidean group
with arbitrary translations+rotations+reflections. For an Heisenberg spin model, this includes time translation
and reversal, simultaneous rotations of all spins by arbitrary angle around arbitrary axis]

e At high T, entropy-dominated equilibrium phase is invariant under the same group as H and therefore all
nonzero averages <O> are those referring to operators O which are left unaffected by G. [Example:in the
paramagnetic phase <m>=0 and the magnetization correlation function Cpimj(X,X')=3"28;Cmimj( |X-x'|) and lim .
xl  Crmimi(|x-x"[)—0].

¢ Whenever an operator average <¢> is not invariant under transformations of the group G, a new order appears
as described by an "order parameter"”, <¢$>. That is the ordered phase breaks the symmetry of H. [Example: in
ferromagnetic phase, <m> is invariant under rotations only about an axis parallel or orthogonal to the
magnetization, thus with reduced symmetry with respect to the paramagnetic phase. Besides, lim x|
Cnimi( | %-X'| )= <m(x)m(x')>=<m>? £0].

e Complete description requires to know how <¢> transforms under G.

¢ If ordered phase breaks the symmetry of H, this implies that two or more equivalent minima of free energy
occur, representing phases which coexist at equilibrium: transformations of the group are those which connect
these minima.

¢ Once <¢> is determined, then the statistical-mechanics properties of the system can be calculatedas usual. The
trick is to introduce Hex= — [ dx h(x)d(x) in terms of the auxiliary field h(x) coupling to ¢(x). This trick has
a:

-- Mathematical convenience as it generates all the needed correlation functions by functional differentiation of
the partition function, and

-- Physical significance, as it restricts the statistical ensemble to that corresponding to one of the free energy
minima

¢ Broken symmetries can be either discrete or continuous:

1. Discrete, that is referring to discrete groups with a countable number of elements. Defects might build up,
which are of the type of walls and domain, accompanied by kinks and solitons. [Examples: Z,.. The case of Z,
with the existence of 2 and only 2 equivalent ordered states with order parameter differing only by sign,
describes the cases of uniaxial (anti)ferromagnetic order in Ising model, order-disorder transition with order
parameter the average difference between densities in ordered and disordered phase, liquid-gas transition
(even if it is first order and only average density changes, so that the order parameter is the average difference
between the liquid and gas densities). Z, describes commensurate-incommensurate transitions. See Chaikin and
Lubensky]

2. Continuous, that is referring to continuous groups with an uncountable number of elements, such as rotations.
At variance with the discrete case, the transition to the new ordered state is accompanied by the appearance of
a low-frequency gapless hydrodynamic mode and elastic behavior. Defects which might build up are of
topological type such as vortices. [Examples: O, continuous group of rotations in n D. The case of rotations in
2D, O, which is equivalent to U(1) describes the cases of easy-plane (anti)ferromagnets, superfluids, smectic-C
and hexatic-B order. O; describes the cases of Heisenberg ferromagnetic order and nematic order. O,
Heisenberg antiferromagnetic order and Self-Avoiding-Random-Walk. See Chaikin and Lubensky]

Order and symmetry breaking within a mean-field approach: in essence, the operator driving the new order is
replaced by its average
¢ Bragg-Williams theory has been developed for the Ising transition, with analytical solution for the free energy
density as a function of temperature and order parameter, i.e. magnetization
¢ Landau's idea: construct a free-energy functional that is
-- invariant under the symmetry group of the disordered phase [e.g. in Ising, would be a functional of the
squared magnetization since it has to be invariant under changes of sign in m]
-- includes the energy cost for deviations from spatial uniformity by means of a term proportional the squared
gradient of the non-uniform average order parameter ¢(x) [validity: slow spatial variations on the scale of
interaction range and/or lattice spacings]
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-- is expanded in powers of ¢(x), appropriate to the required symmetry, with temperature-dependent
coefficients [validity: ¢(x) must be small around the critical temperature, so even if it is simpler and preferable
than Brag-Williams for second-order transitions, is critical for first-order transitions which are characterized by
the discontinous setting of order parameters])

In general, techniques for developing mean-field theories fall into three categories: variational, mode-mode
decoupling, equations of motion

Critical behavior and exponents of physical quantities (all to be intended) close to T,

i W N

N

Once the partition function Z and free-energy density f are given, the relevant physical quantities can be
determined, along with their behavior in the vicinity of T, characterized by critical exponents:

Equation of state % = h from which ¢ can be determined above and below T, ¢~ (Tc — T)#

Order-parameter susceptibility x=‘;—‘l‘:, with x=|Tc — T|7Y

Order parameter vs. auxiliary field h: pxh1/9

Specific heat c,= — % with associated exponent a (has a jump at Tc)

Correlation length §, that defines the microscopic length scale over which the fluctuation b (x)=¢(x)-<d(x)>

of the order parameter at x becomes significantly uncorrelated with 6¢(0). Since the order parameter

correlation function G(x,0)=<d8¢(x) 5 (0)>=ksT x(x,0) and (x )ii(x,x')= &f one has §=(x(0)/x(a)-1)/9%and

5¢;9;
|T-Tc|™Y e WA . .
& & e and x(x,0;T-Tc ) —= indicating a divergence of the correlation length at Tc

|x|d—2
Finally, G(q)xD,q~?~™
All the above can be generalized to multicomponent Gj

s . 1
Within mean field, the exponents can be exactly calculated and turn out to be a=0, § = Y= 1,6 =3,v=

1
2 N=0

Validity and failure of mean-field description

Several transitions can be described within a mean-field theory: normal-to-superconductor transition in metals,
smectic-A-to-Cin liquid crystals, first order liquid-gas, nematic-to-isotropic liquid, and liquid-solid transition.
Notice the difference between second-order Ising and first-order liquid-solid/nematic-smectic/liquid gas
transitions: in both cases the broken symmetry is discrete, but symmetry under time reversal is different so that
Ising must not have odd powers of ¢ in the expansion of f, while the others in general do, which eventually
drives the main difference between 2nd and 1st order behavior.

Mean-field is a valid description until the fluctuations in the order parameter are negligible, that is

<(8d)*>«<dp>2, which turns into (Zi)d_4 = (%E)(4_d)/2> A—':—d = t;(*"9/2 with A a dimension-dependent
0 0

constant, A the jump in the specific heat, &, the T=0 correlation length, and t; = |T—;CT—C| the so-called Ginzburg

reduced temperature. Now, for d>4 §2=* — oo as T>Tc and MF is always valid. For d<4, §2=* — 0 as T>Tc and
MF always fails because of thermal-driven fluctuations, to which quantum correlation-driven fluctuations can
add as in reduced dimensions and notably in 1D.

Smectic A-to-C and normal metal-to-superconducting transitions resist because

t;=107° and 10716 respectively because of large values of €,

Construction of field theory beyond mean-field

When MF theory breaks down, one need a more microscopic description of the partition function Z and of free
energy functional F[¢(x)], which is hared when the length scale set by § diverges. One thus resorts to
semiphenomenological field theories with the local order parameter treated as a classical continuous field
within the concept of coarse graining:

-- the system is divided into many cells with size much larger than the microscopic length scale and containing
sufficiently many particles for statistical purpose

-- ¢(x) is averaged over the cell and becomes a classical variable

--Z and H are written in terms of this new field, integrating over all possible paths of it in space

-- alternatively, discrete lattice field theories can be constructed pursuing the same goal: it is a matter of taste
which to be used

Renormalization Group Theory
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The Renormalization Group Theory introduced by K. Wilson is a powerful method to calculate critical exponents
for non-mean field behaving transitions: it consists of a thinning of degrees of freedom followed by a rescaling
of lengths.

Indeed, critical behavior of different physical quantities can be seen to scale in connected manners, so that not
all the critical exponents are independent. Manipulating the homogeneity properties of the various correlation
functions, one finds that 2v=y, y=(2-n) v, the so-called hyperscaling -that is involving the dimension d- relations
B=(d-2+n)/2, y+2=dv, a=2-dv. Eventually, collecting all together, a+2+y=2

These relations are sufficiently closely verified. After calculations by RG or simulational method and/or
experimental determination, it generally turns out that

-- critical exponents depend on d, symmetry and range of interactions but not on form or intensity of
interactions

-- this fact introduces universality classes: as seen from far away, apparently different types of transitions share
instead the same critical behavior

-- for example, in 3D one typically finds a~0, B~§, Y~=, v~ %, n~0, with detailed differences driven by

3’
symmetry and/or range of interactions

-- the amplitude of the temperature and field dependence is different above and below the transition: the two
amplitude ratios have as well universal behavior, though their variation within the same universality class is
more pronounced, so that predictions are more stringent

Scaling leads to a few essential behaviors. It turns out that, once the gap exponent A=Av=B+y is defined, along

with the reduced temperature t and external field h, one has that
_ h
~ fth)=1¢12~Xo (57)
h
~ bt h)=lelf Xy (3)

_ h
~ x(th)=1t] 77X (5)
That is, irrespective of all possible details, the most significant system observables share the same functional
dependence on (t%) , though with different functions X and different critical exponents. The result can be

extended to the case in which the transition is driven by different external fields and might be reached along
different paths showing multicritical points. In this case, e.g. f(t,h,g,...)=[t|>7%X, (t%t%g ) and so on, with Ag=Ag
v

The origin of scaling becomes apparent in the Kadanoff construction:

- the original lattice is divided into N'=b~%Ncells centered at a'=ba, with each cell centered at x containing b
sites so that x'=x/b

-- the original variable (say, spin) is replaced by a block variable s'(x') referring to the new lattice

-- the new external field h'(x') thus scales as h), = b*«h,=b?"“zh and —2w,, the exponent with which the
correlations in the variable coupled to field h, behave

-- re-writing all the functions of the original variable in terms of the new block variable makes the scaling and
universal behavior emerge

-- in momentum representation, the renormalization procedure corresponds to (i) thinning the degrees of
freedom by tracing over fields ¢(q) within a reduced range A/b<q<A, introding a new Brillouin zone with cutoff
N/b: removal of the largest q-vectors eliminates the faster field oscillations; (ii) rescaling lenghts via q'=bq in
order to revert back to the original BZ-size A; (iii) rescaling fields via ¢(q'/b)={d'(q') so that faster oscillations
are somehow restored

Notice that A, can positive or negative. In the former case the correspondent external field grow after
successive rescalings and is said a relevant field, otherwise it dies and it can be considered irrelevant. Irrelevant
field do not affect the leading singularity at the critical point, however might give nonzero corrections to them,
complicating the determination of critical exponents from e.g. experimental data

The block variable and rescaling concepts of RG are operated via decimation and renormalization procedure. In
essence:

-- block density matrix is defined with new block parameters, for which recursion relations are set in and solved
by iteration until a fixed point is found, that is a value of the parameter which do not change at the next
iteration

-- critical points are described by RG recursion relations

-- a fixed critical point can be stable (all points flow towards it, thus these points are called basin of attraction)
or unstable (its basin of attraction is composed of itself alone) [In e.g. Ising, the stable fixed point describes all
the finite temperature behavior, i.e. the paramagnetic phase, whereas the unstable fixed point describes just
the T=0 Ising critical point]

-- a fixed critical point can be stable along some direction and unstable along others

-- universality comes along since all potentials and/or H in the subspace orthogonal to unstable directions have
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the same exponents

-- linearization of recursion relations around unstable critical fixed points yields the same exponents as those
describing the scaling of the free-energy density
-- comparison between the two provides critical exponents in terms of the parameters

Order_Scaling_RG+Apply2DiscreteSymmBreak_lsing Page 28



Procedures
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e Given a functional form for the free energy, calculate all relevant physical observables and
their critical behavior in mean-field

¢ Reduce the number of independent critical exponents via scaling behavior

e Derive universal scaling behavior around multicritical points

e Operate decimation and renormalization procedure (in 1D, Ising example) with solution of
recursion relations and determination of fixed points and critical exponents
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Proposed exercises
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e See Notes, Problems and Solutions by
Professor Phillip M. Duxbury, Michigan State University, Course
PHY831: Graduate Statistical Mechanics From <http://www.pa.msu.edu/~duxbury/>
In particular:
http://www.pa.msu.edu/~duxbury/courses/phy831/Outline.html

1. Complete Lecture Notes and Problems for Part 4 http://www.pa.msu.edu/
~duxbury/courses/phy831/LectureNotesAndProblemsPart4_2012.pdf

2. Complete Solutions to Problems for Part 4 http://www.pa.msu.edu/
~duxbury/courses/phy831/Solutions4_2012.pdf

e Problems 4.2 page 209, 5.1 (a) and 5.3 page 283 in Chaikin and Lubensky

e For application to the Ising discrete-symmetry breaking transition: See Notes, Problems and
Solutions on these topics by Professor Phillip M. Duxbury, Michigan State University, Course
PHY831: Graduate Statistical Mechanics From <http://www.pa.msu.edu/~duxbury/>
In particular:
http://www.pa.msu.edu/~duxbury/courses/phy831/Outline.html

1. Complete Lecture Notes and Problems for Parts 2 and 3
2. Complete Solutions to Problems for Parts 2 and 3
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e Superliluid behavior occurring below a critical temperature, as 1n, e.g. *He with
1. ~ 2.2 K, manifests in linear and rotational flows without dissipation, pro-
vided that the linear and angular flow velocities be smaller than critical values.
Above these threshold values, sound waves and tiny vortex rings or rotons ex-
citations may set in, where the fluid can be dragged along by the walls and slow
down.

e The definition of superfluidity can be related to the resistance that a fluid offers
to be twisted by transverse, shear external disturbances and, in second place, to
longitudinal compressional perturbations. The superfluid carries no entropy, as
if it were one single quantum state, as it occurs in Bose-Einstein Condensation
(BEC).

e In BEC, a macroscopic occupation of the lowest energy state occurs below a
critical temperature, leading to a sort of condensation of bosonic-like particles
but in momentum or energy space. The system behaves as if it were one sin-
gle particle with well defined momentum and energy. While temperature drops
down, the De Broglie wavelength becomes infinitely large, so that the kinetic
energy of the lowest state drops to zero and the particle wavefunctions hook
together extending over all the volume: they have large probability to be at any
point in space.

e BEC and superfluidity are related phenomena. However, the density of Bose-
Einstein condensed particles is related to the macroscopic occupation of the
lowest energy state, whereas the density of superfluid describes the response
of the fluid to a twist, that is a transverse probe. Strong interactions introduce
a finite probability that non-condensed particles be carried along with the con-
densate during the superfluid flow and thus affect the occupation of the lowest
energy state depleting the condensate: at ideally zero temperature and in homo-
geneous systems, the whole system is superfluid but not necessarily all of it is
Bose-condensed.
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e Superfluidity occurs also in fermionic-like systems, both neutral as in fermionic

3He isotope or charged as with electrons or holes in superconductors: if a sort of
pairing mechanism occurs, the fermion pairs can undergo a form of condensa-
tion in momentum space below a 7., by occupying all one and the same ground
state while the Pauli exclusion principle would prevent them to do so. Key fea-
tures of superconductors are zero-resistance behavior, transparency to radiation
with frequency below a critical @., exponential behavior of specific heat and
thus for activation of thermal excitations, and perfect diamagnetism below 7.
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e Superconductivity or superfluidity of both bosonic and fermionic-like systems

are related phenomena, they all being based on the existence of Bose-Einstein
condensed state with wavefunction y(r) = y/n.(r)e’?™ in terms of a conden-
sate density n.(r) and a global space-dependent phase ¢ (r). The superfluid ve-
locity vy is dictated by the space gradient of the phase. In a fermion system, the
condensate wavefunction becomes the pairing wavefunction y(r) — p(r) =<
W, (r)y;(r) >, and corresponding to the situation in which the Bose particle
(integer spin) is represented by two paired fermions with opposite spins. Other
combinations leading to integer spin are possible, and fermion-pairs wavefunc-
tions do spatially overlap.

The BCS theory explains superconductivity by assuming that electrons close
to the Fermi level are correlated in pairs, so that an energy gap A(7') exists
between the ground and the first excited single particle states essentially related
to the binding energy of the pair. Since the pairs are highly overlapped in real
space though, the gap energy does not coincide with the pair binding energy.
The dependence of 7;. on isotopic species and on vibrational energy supports the
idea that the pairing mechanism in conventional superconductors is originated
by lattice vibrations. Other pairing mechanisms are expected to be involved in
different superconductors, such as the high-T,. ones.

e Whatever the microscopic mechanism might be for the pairing, the BCS theory

has shown to be a general framework to treat superconductivity and superflu-
idity phenomena involving fermionic-like particles, and can be demonstrated
to continuously evolve towards the theory of Bose-Einstein Condensation for
point-like bosonic particles.

¢ The Green's function approach to superfluidity/superconductivity requires the

1.

introduction of matrix Green's functions, which include the off-diagonal long-range
ordering appropriate to the boson or fermion system under consideration. Using a
matrix representation, equations become quite similar to the case of a normal
system. But:

Two self-energies appears, which are related to each other by functional
differentiation via the so-called Hugenoltz and Pines theorem, ensuring a gapless
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character of the excitation energies above the ground state. Approximations to the
self-energies which satisfy HP theorem are said to be gapless

2. Gapless approximation do not necessarily satisfy even simple conservation laws

3. Therefore, perturbative methods and related diagrammatic techniques must be
handled with much care for superfluid/conducting systems
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e A unified theoretical framework exists to treat the dynamics of a weakly
inhomogenous normal and super-fluids, that is derived from a formulation
of DFT in terms of currents and with the use of general considerations
such as Galileian invariance, conservation laws and time-reversal symme-
tries. Explicit calculation of the microscopic current response in the ho-
mogeneous system leads to equations of motion for the currents that are
formally equivalent to Navier-Stokes equations for a normal fluid and to
Landau two-fluids equations for superfluids.

e As compared to normal systems, the structure of these equations reflects the same
conservation laws, galileian invariance, zero-force and -torque theorems. However:

1. one more generalized force appear as a result of galilean invariance and the
presence of a superfluid velocity which for slowly-varying condensate phase is
related to the phase gradient: this force is the interdiffusion current, besides the
normal-fluid velocity which again represents a potential vector able to drive
transverse currents

2. four bulk (instead than one) and one shear viscosities appear, along with the usual
heat conductivity, connected to corresponding longitudinal current-current, current-
superfluid velocity, superfluid velocity-superfluid velocity, and transverse current-
current response functions via generalized Kubo relations

3. two densities: total density (conserved via continuity equation) and superfluid
density, that is an related to an appropriate limit of transverse response function
since the normal fluid density measures how much the fluid responds to a rotation
or twist (a transverse probe)

4. the superfluid density is different from the condensate density: at T=0, n; can be
different from the total density n only because of boundary conditions (due to its
meaning as a response to a twist), while the condensate density n.can be largely
different from n because of interactions. A relation can be derived which connects
ns, nc and the single-particle spectral function embodying the interactions

5. besides zero sound (collisionless sound mode corresponding to shape breathing of
Fermi sphere) and first (ordinary, collision driven density wave) sound, a second
sound mode appears which is associated to an entropy wave, its speed vanishing
with the superfluid density as ns /n,
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Procedures
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¢ Manage statistical-mechanics averages of moving systems via (linear or angular) velocity
transformations

¢ |dentify the superfluid order parameter for Bose and Fermi systems

e Express normal (or superfluid) density as a response function and identify the moment of
inertia as a response function (in fact, the relation between moment of inertia and normal
density)

e Express the relation between condensate and superfluid density, embodying the
interactions via the single-particle spectral function

¢ Similarly to normal systems, write microscopic hydrodynamic two-fluid equations for the
superfluid and make the connection with TD-DFT

¢ Similarly to normal systems, write equations for 1/2 and 1-body Green's functions and
related self-energies

¢ Derive first-order perturbative expansions within conserving and gapless approximations
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e Study the papers

1. Wolfgang Ketterle, Ananth P. Chikkatur, and Chandra Raman, Collective enhancement and
suppression in Bose-Einstein condensates. From <http://arxiv.org/pdf/cond-
mat/0010375.pdf>

2. C.Raman, R. Onofrio, J. M. Vogels, J. R. Abo-Shaeer, and W. Ketterle, Dissipationless flow
and superfluidity in gaseous Bose-Einstein condensates. From <http://arxiv.org/pdf/cond-
mat/0008423.pdf>

3. Gordon Baym, D. H. Beck, C. J. Pethick, Low Temperature Transport Properties of Very Dilute
Classical Solutions of 3He in Superfluid 4He. From <http://arxiv.org/pdf/1408.1619.pdf>

¢ Invent easy forms for the single- and two-particle spectral functions for a fictitious system
and calculate the normal and superfluid density, and the shear and bulk viscosities

e Repeat explicitly the calculation of the approximated self-energies for both Phi-derivable
and Gapless approximations in Hohenber and Martin paper [Annals of Physics 34, 291
(1965), Sec. E] and provide a diagrammatic graphical description

¢ See Notes, Problems and Solutions on these topics by
Professor Phillip M. Duxbury, Michigan State University, Course
PHY831: Graduate Statistical Mechanics From <http://www.pa.msu.edu/~duxbury/>
In particular:
http://www.pa.msu.edu/~duxbury/courses/phy831/Outline.html

1. Complete Lecture Notes and Problems for Part 4
2. Complete Solutions to Problems for Part 4
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¢ The theory of Fermi liquids due to Landau is very powerful in higher dimensions. In essence, it
allows to describe the even strongly correlated many-particle system in terms of quasi-particles,
that are the single particles dressed by density fluctuation (particle-hole excitations in and out
the Fermi sphere) induced by the interaction with the other particles: because of bare
occupation-number arguments, these are very long-living excitations, the longer the closer to
Fermi surface. Increasing temperature (i.e. by thermal effects) or interaction energy in spite of
kinetic energy (i.e. by quantum effects), the momentum distribution appears to progressively
dig in below the chemical potential and built up above it with a progressively reduced jump Z at
the chemical potential. In other words, the spectral function A(w), that is a lorentzian, gets
preogressively sharper as k approaches the Fermi wave-vector, and the total weight of the
lorentzian peak represents the fraction Z of the excitation that is in the quasiparticle state,
whreas the rest 1-Z is in a continuous background with no well-defined structure: this is the
most apparent manifestation of correlations, which all the other can be traced back to.
¢ The whole reasoning dramatically fails in 1D:

1. Noindividual motion in 1D is possible, thus "collectivization" of the excitations occurs

2. Because only collective excitations can exist, a single fermionic excitation necessarily has to split
up into a collective excitation carrying charge (like a density or sound wave) and one carrying
spin (like a spin wave), with in general different velocities

3. In higher dimensions, a divergence of the response function is a signature of a phase transition
to a differently ordered state. Divergence is obtained whenever nesting of the Fermi surface
occurs, that is exists a range of Q wavevectors such that §(k+Q)=-§(k) so that §(k)-§(k+Q)=2§(k) at
the denominator of the response function. This is always the case in 1D at the Fermi
wavevector, as linearization of §(k) around ke shows: §(k) ~vg(1k-ke) for k~tke. Moreover, if the
divergence is in the particle-hole channel x,., this is a transition to a phase with either
charge/density (Charge Density Wave) or spin ordering (Spin Density Wave, a kind of
antiferromagnetic ordering). If the divergence is in the particle-particle x,., channel, then the
transition corresponds to a BCS-like pairing: in this case, the nesting is due to the pairing
condition §(k)=§(-k) itself or else time-reversal symmetry. In higher dimensions, either Xo.» or Xp-p
diverge. In 1D, one is always in a nested condition

4. In higher dimensions, one may create a low-energy particle-hole excitation with infinitesimally
small energy for q vectors wherever between 0 and 2k¢. In 1D, the Fermi surface is a segment,
and this operation is possible only at q=0 and q=2k¢

5. As aresult, the average energy of a particle-hole excitation is linear in q and has a well-deined
momentum. Also, the dispersion in energy is quadratic in g, going to zero faster than the
average energy. Thus, in 1D particle-hole excitations are well-defined particles (not excitations
dressing a particle as in Fermi liquids) with well-defined momentum and energy

¢ The essence of bosonization method is the following:

1. The original model of fermions with band curvature as in Fig. 2.1a is mapped into a model of
fermions with the linear spectrum in Fig. 2.1b. A lower cutoff might be necessary to make the
model well defined

2. The density fluctuations, which are a superposition of particle-hole excitations, are described by
an operator which is - in fact - of bosonic nature. Due to the large number of occupied states,
the density-fluctuation operators turn out to satisfy boson commutation relations (recovering
an intuitive result)

3. Then, an effective single-particle operator is defined, one for each left and right linear branch.
This can be expressed in terms of the density-fluctuation operator and turns out to be bosonic
as well. Care is taken to globally conserve the number of particles. Then, new fields that are
symmetric and antisymmetric combinations of left and right operators are defined

4. When the original Hamiltonian is re-written in terms of these bosonic operators after taking into
account all possible processes allowed in 1D, it turns out to be quadratic (!) as a result of an
exact construction within the limit of large number of occupied states and the low-energy
behavior accessed. H is characterized by two parameters, the so-called Luttinger parameters,
which can be determined after theoretical perturbative methods or - even better - simulational
methods:

-- u representing the velocity of the excitations eventually renormalized by interaction processes
with respect to its noninteracting vr value, and
-- K embodying the correlations with K=1 referring to the noninteracting system, K<1 to
repulsive and K>1 to attractive interactions

¢ As usual, thermodynamic properties, correlation properties, pairing properties and so on can be
derived and expressed in terms of u and K. In particular, the discontinuity of n(k) at the Fermi
wavevector disappears, and n(k) acquires a power-law singularity: a signature of Luttinger-
liquid, 1D behavior. The DOS also goes to zero as a power law

¢ When spin is considered as well as charge/density, the number of fields doubles, while the
charge/density and the spin channels remain separated (within this low-energy limiting
behavior) and phase diagrams as complex as that in Fig. 2.9 are possible

¢ From T. Giamarchi, Quantum Physics in 1D, Clarendon
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30 BOSONIZATION

F1G. 2.1. The original model of fermions with band curvature (a) is replaced
by a model of fermions with a linear spectrum (b). This forces to introduce
two species of fermions (right (R) and left (L) going fermions). The spectrum
is now extended to all values of k, leading to an infinite number of negative
energy states. A cutoff on the momentum might be needed to make the model
well-defined.
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(SS) | (cDW)

o Massive A

Fic. 2.9. Phase diagram of the system with spin for spin isotropic couplings.
There are four sectors depending on the value of the parameters K, and the
sign of the backscattering term g, (or alternatively the value of the bare
parameter K, ). The phases correspond to the most divergent susceptibility.
I have indicated in parenthesis subdominant divergences. In the upper part
(K, > 1) the spin sector is massless. In the lower part (K, < 1) the spin
excitations are massive with a gap A,.
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e Express single-particle operator for left and right branch in terms of original fermionic
operators

e Construct the conjugate Luttinger fields as symmetric and antysimmetric combinations of L
and R fields

e Build up H in terms of conjugate Luttinger fields for different g-ologies

e Express relevant physical observables in terms of u and K Luttinger parameters
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¢ Study the paper
P. Pedri (Orsay), S. De Palo (Trieste), E. Orignac (ENS-Lyon), R. Citro (Salerno), M. L. Chiofalo
(SNS Pisa),
Collective excitations of trapped one-dimensional dipolar quantum gases. Journal-ref: Phys.
Rev. A 77,015601 (2008). From http://arxiv.org/pdf/0708.2789.pdf or

Luttinger hydrodynamics of confined one-dimensional Bose gases with dipolar interactions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 New J. Phys. 10 045011
(http://iopscience.iop.org/1367-2630/10/4/045011)
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e Choose from T. Giamarchi, Quantum Physics in 1D, Clarendon, one out of the following
applications of bosonization method to physical systems, and perform the related
calculations:

0. Model with spin [Ch. 2.3] leading to the phase diagram
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Fi1G. 2.9. Phase diagram of the system with spin for spin isotropic couplings.

There are four sectors depending on the value of the parameters K, and the
sign of the backscattering term ¢, (or alternatively the value of the bare
parameter K, ). The phases correspond to the most divergent susceptibility.
I have indicated in parenthesis subdominant divergences. In the upper part
(K, > 1) the spin sector is massless. In the lower part (K, < 1) the spin
excitations are massive with a gap A,.
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Spin 1/2 chains [Ch. 6]

Interacting fermions on a lattice [Ch.7]
Coupled fermionic chains [Ch.8]
Disordered systems [Ch. 9]

Interacting 1D bosons [Ch. 11.1]
Impurities in Fermi liquids [Ch. 11.2]
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¢ From T. Giamarchi, Quantum Physics in 1D, Clarendon,

“g) = G leoatm) + conan)]

The = L w(g) s shown in Fig. 5.6 We just saw bhow
T i 3 My to give & spin 1 sodution (the magnon ).
. This

the literatare. Their study falls outside of this brief presontation aond |
ol for e o this prodat.

This b & small wour of the nformation that one oan directly extract foem
the Bethe ansats Mont of the th propertios cam also be

of correlation
mhm»—-ﬂlt&»wmmt(-‘.ﬂhdd 1909),
1 refor the render to the literatore for more details an thess podnts.

presont vory briofly soose of the sumsersonl metbods that have peovesd
wery useful in one dimension. Indeed, the mumerionl methods have gainod a con-
I In oo the finite size effocts are quite small in
1o higher winew Lhe v AL i op-
il In addition, -ohmwwwmhwmm-th
Luttinger parsmeters one can of course use & d of the
for Ahis g puome. Comnbeiniog the samerics with the Lottinger Tguid oonoept has
thus proved 1o be o very powerful tool.

15/06/2015 00:43 - Screen Clipping

-
m“ I. hod im phe. Oue simply dingonalises the
the T

fai il s
Alisagh the principle s cmplicity asll, b lo cleas that the bnplemestasion of
e method canmot be Hamil e ndeed &
Sormiciable probies. The & of the Milbert spuace fo bamonguies. Lot

womrwe esch worse. The y of exnct s theas & very stroog
o find WL where the ¥ wtaten have been
15/06/2015 00:44 - Screen Clipping
A ZEST OF NUMERICS s

werncdicated. This s, for exmmple, the cuse of the ¢-J model that we will eocssnboe
l--—d-n-odadhhw’ llw-v\lh.llh—-umw
tnrge § e Iy sedd
belng the Lancsos technigue. l*m.—&mmnmmhmm
on the hod sl (L DTN, wnd Flaor, 1964, Oltmas and Betes,
1978 Davidson, 1993) ————

Thee melvinest sgpe oo emmet elbonggml  onlom e ol chiise the exasct and systensatic
ch.u.n-c of W uw-v- - ummk‘lh-mm—hn one gets the owost ehpenstaton
o letrimsic mumserical Banitasbon
‘l‘l—n-‘.m(hn-ﬁ.d“-hhﬂhlh 1 nned elge
-'-‘- thee cnn be d < Iy in real thoe on

ey £ Ope cnn work -t mewc (which
cnm be alvo » ok ). Bt 1l bons have Loem extrosnely wseful to
L

thy fromn
We will sew exasngdes of yesalts based om exact diagonalization in €
The drawback is of cowrse mainly the sime limitation Sacoe the 1Lt space
doahilon every Lo ane ste s sddded, thin s st a peobidem that will be solved s
the futare. Tn-——n-uuuuu-nhgih- Sonng «Sastace I--—rgl—h-vﬁ:-h
- very tricky b For the frn of the

abike 1 ™ Ranch Be saclabe Fads 2lias

15/06/2015 00:44 - Screen Clipping

- very e e CAE
nhmwm-dn&-«nﬂ-d"’/L-h—w“’ the bandwidih
dlh-’-l— Since 1K corresponds to 30 GHe, one s quite far from the low.
Trovpeency b in an -

Monte-Uario 1o appusite in spirit to exndl diagnaalisations. It is & well-known
techmique at the clussionl level. One hns & partition fusction

Zu I e (5.64)
comha
The swm over all i I an N J with N very large.
The best way Lo evnbuato soch b A buckd
wamwbmnmum)-ﬂm-—am
(2000). Foe the ‘-ﬂ, of the Moste Carlo mothod is
the fact that the erroe in only as 1/vE where ¢
» the compating time. ltu—llﬂymwu-(ddﬂ-w)m
wuh‘ma-bnhr‘nrlph
hhﬁuy-w-wn-uumdw
tum b Plruth-‘ of the par

I sywtom
-wmwmwmnvuﬁ-.mmma:&m
B Bttty for wa mealyticad gays

15/06/2015 00:45 - Screen Clipping

Simulational methods for MBP Page 44



e - R e e e e

S (bt b S - Thawe

it wnrhosan wyw of duding Sl Mot Curtes for fermboms, toe arnl mee

-—.-n--——-—n—.;—-.mn-or&.—wa-&.m

o ol 20T The e S tasmenl latengrad (3

m‘_—b‘l—h—— Fow Sorme e - —

et by hart wwew wwind objects R ms Clrnssemane vesriahleon It b sl
— T hewe

LR R SR DT mas)

T et bon - - -
~.
-« m[fe *>"
-

~
SR ) Ca (n0s)

ek

15/06/2015 00:45 - Screen Clipping

oy
where ArN, —ﬁ-dl.—duns-v Ar? have been

term on ench site can be by an lsing @ = +1 on
woch site (wnd ot onch time slice)

~taryse
P LT T SN P TR 3 5 Trafeteton —=u)) (5.67)
where coshi(A) = «3>* V77 Aftor the b been d uming (5.07),
the trace over the of fr can be done explicitly in (5.06).
The I of the par L0 {mod the virioms correlation functions)
s thus reducod to the of the cla | st ovor the Ixing variables o
mwa.onmd--mh’m«—mm

of
mmwhomuhuw.mmmwu
for o classbonl systom
The adwntage of Monte - Carlo s s p-n-hdlly u. treat sedatively hv' -
¥ It s alsor an
mu—wmuwwmth‘mmh&w-uuw
a-.dr-wb.d;.

wly, theere are ! drawbacks The first probdem s known s
th—-.‘npmhlnn %mﬂhdnmmhmmuumr
fwud) froem the Sy e the form degr Freod: there s no
15/06/2015 00:46 - Screen Clipping
A ZEST OF NUMERICS "y

pearnmtes that it i s positive nambor. In geoeral, this s ot the case, contrary
w-»e—uﬂ_-h-vu--uu--'"-t-u-u-ny.-um.nn-
means that 1o the cor wme has now Lo sdd positive sond
AL 1> Ench individual torm can thas be moch larges thans the fisal

onn (and in genoral will!) grow ¥ foame oo Py -
Paced Lo for which ooly L
are o - 4 where ome sums freoly over the configrurat kons.
There sh thus be h in the sum that cancels the umwnnted
ratbons of the o to keep only the good cmnes. The ol this by
that, Wylnﬂmr&kﬂf—.lbnmﬂ-wml‘hl&w
thom of the correl more
tmaney on the doos Bot any more an incressed scoowrscoy
= s yor 3 cures have boen o
bt theey al dgor of what shonubd be the structure of the
trae fermbonic wave function, which binses the method. In scane fortunate cases,
u——..—-e—-h-uu.- ghits are o prommi =, for examnpie,
the conso for spin or for the d modcl at

h.ﬂll“ l-l&l_*mm&--ﬂm‘dwubhn

The swcomd probdesn ootnes from the fact that the mothod svalaatos the corre-

15/06/2015 00:46 - Screen Clipping

The seccmnd parodibem comnes from the fact that the method cvnluates the corre

Bonbioses fissc b o asgissary Liene To make an ‘asalytical’ oont st son om e -
—rk-l.—uh(.nl.-u-’)l-l-l-dw Th-.ln--udw-.—yb-:h—
Mosto Carlo resulos to the

have been devised for that, w- ‘ 4e

can alsa be used to With this method the two
e nre the comgw il the e twist b

Tn cme dissension thore s s rooont mothod that hae allowed to make gigantic
Progpress s cssr abaliny o obtain sumsericon] solutions (White, 1903). It s at the
—-—-tbeh-nw-dl_-—-pn--mc_ma lbhh-h-l-ﬂo
and directly insgired foom the e p——y
Wiksaom fom the Komdo peobdess. The bdes s to dies n-lh—n‘-ruhl-v-lmm
wnly the bow onorgy statos amd thes implement amerioally o ronormealoeat o
proscesiure. With such o meetiod e draw backs of (he oxect diasonalizaimen due
s ther mowdd Lo hewp too many states are climinated while in principle keepang as
accuracy for the ke energy phywios
Homeewor, the procedure s oot s sasy to do e . Lt soe (e
the peotsess with foe olectrons Lot un assame that o has diagonaiised o
the

Sowe-emerny physéos for
n segnent of sise 2L fromn the knowledge we have for the system of sise L. If

15/06/2015 00:47 - Screen Clipping

Simulational methods for MBP Page 45



Fic. 5.7. To build a numerical renormalization group it is necessary to take
into account various possible boundary conditions. (a) If one keeps only the
low-energy of a system of size L. with hard boundary condition then it is im-
possible to reproduce the low energy sector of a system of size 2L by coupling
two such segments. (b) If all possible boundary conditions are allowed then
it is possible to get a close approximate of a low-energy state in a segment of
size 2L based on the low-energy properties of segments of size L. It is thus
possible to build a numerical renormalization group.
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Proposed exercises
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See Notes, Problems and Solutions on these topics by
Professor Phillip M. Duxbury, Michigan State University, Course
PHY831: Graduate Statistical Mechanics From <http://www.pa.msu.edu/~duxbury/>
In particular:
http://www.pa.msu.edu/~duxbury/courses/phy831/Outline.html
1. Complete Lecture Notes and Problems for Part 1
2. Complete Solutions to Problems for Part 1
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