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The response function measures the change of a given observable as a consequence of the 
action of an external perturbation coupling to the same observable or to a different one to 
which it is correlated. Mathematically, a response function (the imaginary part of it) is in 
essence the equilibrium average on the commutator at different times between the 
operator related to the observable and the operator related to the quantity to which the 
external disturbance couples. By this means, a non-equilibrium property is related to an 
equilibrium property. 

•

The dynamical structure factor (is a correlation function and) measures the intensity of the •
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The dynamical structure factor (is a correlation function and) measures the intensity of the 
scattered probe (particle or radiation) after this has impinged on the sample material and 
exchanged (lost or picked up) energy and momentum with (to or from) the excitations of the 
system. Ratios between the intensities of Brillouin (finite frequency) to Rayleigh (elastic, 
zero frequency) peaks yield information on thermodynamic derivatives such as specific 
heats. Widths of the peak yield information on transport coefficients (see Appendix below).

•

The imaginary part of the response function measures the dissipated power of the probe 
into the sample

•

The response function is characterized by space and time symmetries are built in the system.•
Structure factor and imaginary part of the response function at finite temperature are 
related to each other: the dissipated power of the probe on the sample provides 
information on the (spontaneous) fluctuations of the excited observable and thus on the 
system structure. 

•

Sum rules are exact expressions composed from n-th frequency moments of the imaginary 
response function - thus of commutators with the Hamiltonian - which help setting 
benchmarks to approximated response functions.  

•

Variables which are associated with the densities of conserved quantities (particle or spin 
density and related currents, energy,…)  are almost time independent when the conserved 
quantities vary slowly in space: the time Fourier transforms of their spatial integrals - i.e. the 
k=0 part of the spatial Fourier transform - are proportional to a delta-function in frequency.  

•

Under these conditions, their behavior is governed by hydrodynamic laws. Thus, the 
equations of hydrodynamics and the associated thermodynamic and transport behavior 
described by transport coefficients, can be deduced from theoretical calculation or 
experimental measurement of the long-wavelength, low-frequency correlations functions 
(performing the limits in appropriate order). 

•

The poles of the frequency and momentum-dependent response function represent the 
frequencies and damping constants of the normal modes (excitations) of the system (e.g. 
sound velocity and its attenuation). Modes are of two types: propagating modes (e.g. a 
density fluctuation propagates as an ordinary sound waves) and diffusive modes (e.g. an 
entropy fluctuation spreads out diffusively by a random walk process)

-

The residues represent the effectiveness of external disturbances in setting up these modes. 
In particular, 

-

a) in the k-limit in which the frequency goes to zero first and then k goes to zero, the 
response function yields the static susceptibilities which are thermodynamic derivatives of 
the conserved quantities with respect to their conjugated variables (e.g. magnetization with 
respect to magnetic field)
b) in the omega-limit in which the wave number goes to zero first and then frequency does, 
the expression for the response function reduces to a constitutive equation relating the 
current of a conserved quantities (e.g. pressure that is the current of the momentum) to the 
gradient of the conjugate variable (e.g. fluid velocity or vector potential)
c) the real part of the coefficient relating these two latter quantities is the corresponding 
transport coefficients: thus transport coefficients can be obtained both from the poles (e.g. 
as diffusion coefficients) and from the residues of the response function (e.g. as viscosities). 
These is the content of Kubo relations
If the number of conservation laws is - say - N, the number of thermodynamics correlation 
functions is N2, and N2 is the number of thermodynamic second derivatives - like 
compressibility and other susceptibilities like spin susceptibility - and N2 transport 
coefficients.  The number of independent terms is smaller whenever symmetry properties 
exist. 

•

Microscopic hydrodynamic (Navier-Stokes for normal fluids) equations can thus be obtained 
by combining together the following exact relations and comparing them with the low 
frequency and wave number expressions of the response functions: 

•

conservation laws relating the time derivative of the quantity (for normal fluid: particle 
density, current density, energy) to the divergence of the corresponding current (for normal 
fluid: particle-current density, generalized pressure, or stress tensor, and energy-current 
density)

-

galilean transformation, zero-force and zero-torque laws-

constitutive relations, that are expansions of the current densities to first order in gradients -
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constitutive relations, that are expansions of the current densities to first order in gradients 
of the local conjugated generalized forces (velocity field representing the analogue of a 
vector potential which might trigger transverse currents, temperature and pressure). In 
essence, the constitutive equations relate the current of a conserved quantity (those just 
listed above) to their: 

-

  a) non-dissipative part (density times velocity field for the particle density, pressure for the 
stress tensor, velocity field times energy density plus pressure for the energy current) 
because of galilean transformation, and 
   b) dissipative part driven by the gradient/divergence of the conjugate variable dictated by
zero-force (momentum conservation) and zero-torque (angular momentum conservation) 
laws, via fluid viscosities (velocity field for the stress tensor via the bulk and shear 
viscosities, temperature for the energy current via the heat conductivity). So for example, an 
energy current can be produced by a nonzero average velocity field carrying energy and/or 
pressure, but also by a temperature gradient (even if the average velocity is zero). Note that 
particle-density current is driven only by non-dissipative terms (thus, no pressure and no 
temperature gradients via related viscosities), nor the energy-density current involves 
pressure gradient-driven terms,  because of zero-force theorem
thermodynamic  relations, connecting the gradient of local generalized forces (like pressure 
or temperature in normal fluids) to the remaining variables (like local particle and energy 
density), via thermodynamic derivatives connected to frequencies of excitations (e.g. speed 
of sound) and their damping

-
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Given H with external perturbation acting on a selected observable, express the space and 
time/momentum and frequency fluctuation of the observable out of equilibrium in terms of 
the real-time response function. In particular:

•

- Single out the real and imaginary time parts of the response•
- Identify the imaginary part with dissipation•
- Relate the following quantities: response function-dynamical structure factor-pair 
correlation function

•

Relate imaginary part of response function and dynamical structure factor at finite 
temperature (fluctuation-dissipation theorem)

•

Relate system properties to the response function: screened potential, correlation energy, 
pressure and compressibility [Ch. 5.6 Mahan and/or Ch. 2 Kadanoff+Baym]

•

Calculate sum rules•
Calculate the response function in Random Phase Approximation by equation of motion 
method and corresponding dielectric function [Ch. 5.5.B Mahan]

•

Write hydrodynamic equations by combining conservation laws, constitutive relations, 
thermodynamic relations, galilean transformations, zero-force and zero-torque theorems 
[Ch. 4 Forster and/or P.C. Martin]

•

Link phenomenological viscosities, transport coefficients, diffusion constants, frequencies 
and damping of excitation modes, and thermodynamic derivatives with k- and frequency-
limiting behaviors of response functions (via Kubo relations and thermodynamic sum rules) 

•

Procedures
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Properties of response functions and connections with pair correlation function and 
structure factor

•

Problems 9 and 10 page 494 Ch. 5 of Mahan II edition1.
Problems 3 to 8 pages 127-128 Ch. 6 of Kittel II rev. edition [solutions in Appendix] 2.

     

Calculate RPA response and/or dielectric functions and its extensions•
Study the paper 1.
Journal of Physics: Condensed Matter Volume 6 Number 42 
S Conti et al 1994 J. Phys.: Condens. Matter 6 8795 doi:10.1088/0953-8984/6/42/011
Dielectric response of the degenerate plasma of charged bosons in static-local-field 
approximations 
S Conti, M L Chiofalo and M P Tosi
From <http://iopscience.iop.org/0953-8984/6/42/011>
Examples in Ch. 5.1-5.4 of Iadonisi, Cantele, Chiofalo and Problems with solutions 5.1-5.5 
therein

2.

Use the RPA for a fermion system at very low temperature to determine zero and first sound 
collective excitations [e.g. Ch. 7.4 of Kadanoff and Baym ]

3.

Sum rules•
Study the paper 1.
Journal of Physics: Condensed Matter Volume 8 Number 12 
M L Chiofalo et al 1996 J. Phys.: Condens. Matter 8 1921 doi:10.1088/0953-8984/8/12/007
Sum rules for density and particle excitations in a superfluid of charged bosons 
M L Chiofalo, S Conti and M P Tosi
From <http://iopscience.iop.org/0953-8984/8/12/007> 
Problems 16. and 17. page 495 Ch. 5 of Mahan II edition 2.

Connection with microscopic hydrodynamics•

Study the example of spin diffusion in either Ch. 2 of Forster or (preferable) Sec. C of P.C. 
Martin

1.

Proposed exercises
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Write Local Density Approximation for the nonlocal Hartree-Fock exchange potential 
[Iadonisi, Cantele, Chiofalo p. 620]

•

Write closed set of Kohn-Sham equations, given H•
Write the analogue of Kohn-Sham equations in the case of current-density functional theory•
Write Navier-Stokes equations from current-density functional theory [Vignale, Ullrich, 
Conti, PRL 79, 4878 (1997) see http://arxiv.org/pdf/cond-mat/9706306.pdf]  

•

Procedures
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Quick Questions, Examples, and Problems 6.2-6.5 and 6.8-6.11 with solutions in Ch. 6 of 
Iadonisi, Cantele, Chiofalo [ICC]

•

Study the papers on applications of either DFT or TDDFT to different systems:•
Ullrich and Vignale, Time-dependent current density functional theory for the linear 
response of weakly disordered systems

1.

From <http://arxiv.org/pdf/cond-mat/0201483.pdf> 
Dowload Baym and Pethick, Ground-state properties of magnetically trapped BEC Rubidium 
gas, http://arxiv.org/pdf/cond-mat/9508040.pdf. Use eq. (4) or (12) therein as 
approximations for the equilibrium densities of a BEC of Rubidium atoms in a harmonic trap, 
and calculate within LDA expressions for the energy per particle of the inhomogeneous  gas 
and the compressibility

2.

P. Pedri (Orsay), S. De Palo (Trieste), E. Orignac (ENS-Lyon), R. Citro (Salerno), M. L. Chiofalo
(SNS Pisa) 

3.

Collective excitations of trapped one-dimensional dipolar quantum gases. 
Journal-ref: Phys. Rev. A 77, 015601 (2008) http://arxiv.org/pdf/0708.2789.pdf 
S. De Palo, E. Orignac, R. Citro, M. L. Chiofalo, The low-energy excitation spectrum of one-
dimensional dipolar quantum gases. Journal-ref: Phys. Rev. B 77, 212101 (2008)
http://arxiv.org/pdf/0801.1200.pdf

4.

ML Chiofalo, SJJMF Kokkelmans, J. Milstein, M. Holland, Signatures of resonance 
superfluidity in a quantum Fermi gas,  http://arxiv.org/pdf/cond-mat/0110119.pdf

5.
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Dictionary between Green's functions and response functions. In particular:•
Single- G1 [two- G2]particles Green function describe the propagation of a disturbance once 
one single [two particles in sequence (add two and remove two, add and remove two +add 
and remove two,…)] is [are] added or removed to or from the system at equilibrium. Similar 
concepts hold for higher-order GF (from now on only G1 and G2 are considered)

1.

G1 and G2 satisfy the same boundary condition in imaginary time, which leads to the 
definition of advanced and retarded Green's function, to the analogue of the fluctuation-
dissipation theorem, and the definition of the single-particle and two-particles spectral 
functions as the Fourier transforms, from time to frequency domain, of the imaginary part of 
the response function 

2.

In the case of free particles, the single-particle spectral function A(ω)~δ(ω) is a delta in 
frequency/energy and the two-particle spectral function is zero. In the interacting case, the 
two-particle spectral function Γ(ω) represents the microscopic expressions for the finite 
width of the lorentzian-shaped (no longer delta-function shaped) single-particle spectral 
function of a damped harmonic oscillator, as driven by dissipation (damping) processes

3.

Information contained in the Green's functions: 4.
-- The single-particle spectral function A(ω) represents the weight with which the average 
occupation number f(ω) of the normal mode with energy ω enters the particle-number 
counting

-- A(1±f)/Af=        is the detailed-balance principle

-- From the partition function Z=tr[         ]=    , the average energy
<H>= FT[(ω+p2/2m)f(ω)A(ω)/2], the average number of particles           and
average density n containing A(ω), the pressure P from           

,

and the correlation

energy from               can be easily calculated. In essence, once A(ω) and  
Γ(ω) are known
An imaginary-time response function can be defined , whose Fourier transform in frequency 
domain corresponds to the real-time response function, where the corresponding spectral 
function is the difference between the advanced and retarded components of the 
frequency-FT of the imaginary-time Green's function

•

The single-particle Green's function satisfies a self-consistent equation of motion, whereas 
the G2

•

appearing in this equation can be replaced in terms of G1, since schematically an out-of-
equilibrium Green;s function can be defined in the presence of a perturbing external 
potential U coupling e.g. to the density, so that the functional derivative relation 
±iδG1/δU=i[G2-G1G1] holds in terms of the external potential U coupling to the density (in 
this case, generalizable to other situations).
Approximations for G2 allow to solve for G1, calculate the response, and from the response 
calculate the transport properties, as long as it has been done within the response-function 
theory. More efficiently, a technique to consistently derive approximations for G1 is by 
iteration: in the self-consistent equation formulated only in terms of G1 , the non-interacting 
G0 is first introduced, from which a new single-particle G is calculated and updated, and so 
on. This technique can be visualized in terms of diagrams expanding in powers of the 
interparticle interaction potential V.

•

Alternatively, the concept of self-energy Σ=  
     

  is introduced, which contains all the
information on interactions and which satisfies the usual boundary conditions as the Gs. In
essence,  Γ(ω)=  

       
 (ω) (the plus and minus signs for Bose and Fermi particles) 

relates the two-particle spectral function to the advanced and retarded self-energy, in much
the same way as  A(ω)=  

       
 (ω) relates the single-particle spectral function to the

advanced and retarded single-particle Green's function.   
 (ω) represents the collision rate

after adding a particle to the system. Finally A(ω)=Γ(ω)/[(ω-E(p)-Re Σ(ω))2+Γ(ω)2/4]

-

•

Finally, average particle, current, and energy densities can be defined in terms of Green's 
functions with corresponding conservation laws in the slowly-varying variable limit: the 

•

Concepts
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functions with corresponding conservation laws in the slowly-varying variable limit: the 
conservation laws of hydrodynamics are recovered as a hierarchy of side-to-side functionally 
differentiated equations, stemming from the lowest-order one, that is the continuity 
equation.
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Derive the boundary condition for Green's functions and self-energies•
Express the physical observables in terms of spectral functions•
Write the equation of motion for G1 both in terms of G2 and in terms of Σ•
Operate the iteration procedure to derive approximations for G via functional differentiation•
Express approximation in terms of diagrams•
Link imaginary- and real-time Green's functions•
Express conserved particle, current, and energy densities in terms of Green's function  G1•

Procedures
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•
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Study the following examples from Haken, Quantum Field Theory of Solids. An introduction, 
North Holland (1976)

•

Proposed exercises
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• The dynamics of any system of particles/spins is determined by an H that is invariant under transformations in 
some group G. [Examples. For a gas, this group includes time translation and reversal, and the Euclidean group 
with arbitrary translations+rotations+reflections. For an Heisenberg spin model, this includes time translation 
and reversal, simultaneous rotations of all spins by arbitrary angle around arbitrary axis]

• At high T, entropy-dominated equilibrium phase is invariant under the same group as H and therefore all 
nonzero  averages <O> are those referring to operators O which are left unaffected by G. [Example:in the 
paramagnetic phase <m>=0 and the magnetization correlation function Cmi,mj(x,x')=3-1δijCmi,mj(|x-x'|) and lim|x-

x'|

→∞

Cmi,mj(|x-x'|)→0].
• Whenever an operator average <φ> is not invariant under  transformations of the group G, a new order appears 

as described by  an "order parameter", <φ>. That is the ordered phase breaks the symmetry of H. [Example: in 
ferromagnetic phase, <m> is invariant under rotations only about an axis parallel or orthogonal to the 
magnetization, thus with reduced symmetry with respect to the paramagnetic phase. Besides, lim|x-x'|

→∞

Cmi,mj(|x-x'|)→<m(x)m(x')>=<m>2 ≠0].
• Complete description requires to know how <φ> transforms under G.
• If ordered phase breaks the symmetry of H, this implies that two or more equivalent minima of free energy 

occur, representing phases which coexist at equilibrium: transformations of the group are those which connect 
these minima. 

• Once <φ> is determined, then the statistical-mechanics properties of the system can be calculatedas usual. The 

trick is to introduce Hext           
 

 
φ(x) in terms of the auxiliary field h(x) coupling to  φ(x). This trick has

a:
-- Mathematical convenience as it generates all the needed correlation functions by functional differentiation of 
the partition function, and
-- Physical significance, as it restricts the statistical ensemble to that corresponding to one of the free energy 
minima

• Broken symmetries can be either discrete or continuous:
1. Discrete, that is referring to discrete groups with a countable number of elements. Defects might build up, 

which are of the type of walls and domain, accompanied by kinks and solitons. [Examples: Zn. The case of  Z2

with the existence of 2 and only 2 equivalent ordered states with order parameter differing only by sign, 
describes the cases of uniaxial (anti)ferromagnetic order in Ising model, order-disorder transition with order 
parameter the average difference between densities in ordered and disordered phase, liquid-gas transition 
(even if it is first order and only average density changes, so that the order parameter is the average difference 
between the liquid and gas densities). Zn describes commensurate-incommensurate transitions. See Chaikin and 
Lubensky] 

2. Continuous, that is referring to continuous groups with an uncountable number of elements, such as rotations. 
At variance with the discrete case, the transition to the new ordered state is accompanied by the appearance of 
a low-frequency gapless hydrodynamic mode and elastic behavior. Defects which might build up are of 
topological type such as vortices. [Examples: On continuous group of rotations in n D. The case of rotations in 
2D, O2 which is equivalent to U(1) describes the cases of easy-plane (anti)ferromagnets, superfluids, smectic-C 
and hexatic-B order. O3 describes the cases of Heisenberg ferromagnetic order and nematic order. Oo

Heisenberg antiferromagnetic order and Self-Avoiding-Random-Walk. See Chaikin and Lubensky] 

Ordering and symmetry breaking

• Bragg-Williams theory has been developed for the Ising transition, with analytical solution for the free energy 
density as a function of temperature and order parameter, i.e. magnetization

• Landau's idea: construct a free-energy functional that is 
-- invariant under the symmetry group of the disordered phase [e.g. in Ising, would be a functional of the 
squared magnetization since it has to be invariant under changes of sign in m]
-- includes the energy cost for deviations from spatial uniformity by means of a term proportional the squared 
gradient of the non-uniform average order parameter φ(x) [validity: slow spatial variations on the scale of 
interaction range and/or lattice spacings]
-- is expanded in powers of φ(x), appropriate to the required symmetry, with temperature-dependent 

Order and symmetry breaking within a mean-field approach: in essence, the operator driving the new order is 
replaced by its average

δConcepts
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   Order_Scaling_RG+Apply2DiscreteSymmBreak_Ising Page 25    



-- is expanded in powers of φ(x), appropriate to the required symmetry, with temperature-dependent 
coefficients [validity: φ(x) must be small around the critical temperature, so even if it is simpler and preferable 
than Brag-Williams for second-order transitions, is critical for first-order transitions which are characterized by 
the discontinous setting of order parameters]

• In general, techniques for developing mean-field theories fall into three categories: variational, mode-mode 
decoupling, equations of motion

• Once the partition function Z and free-energy density f are given, the relevant physical quantities can be 
determined, along with their behavior in the vicinity of Tc, characterized by critical exponents:

1. Equation of state 
  

  
    from which φ can be determined above and below Tc

, 

φ≈        

Order-parameter susceptibility χ=
  

  
     with χ≈        2.

3. Order parameter vs. auxiliary field h: φ≈    

4. Specific heat cv   
   

    
     with associated exponent α (has a jump at   )

5. Correlation length ξ, that defines the microscopic length scale over which the fluctuation  φ(x)=φ(x)-<φ(x)> 
of the order parameter at x becomes significantly uncorrelated with   φ(0). Since the order parameter

correlation function G(x,0)=< φ(x) φ(0)>=kBT  χ(x,0) and (χ

-

1)ij(x,x')=
   

     
    , one has  ξ=(χ(0)/χ(q)-1)/q2 and  

ξ≈    
         

  
       and χ(x,0;T→  )≈

       

            indicating a divergence of the correlation length at   

6. Finally, G(q)≈         

7. All the above can be generalized to multicomponent Gij

8. Within mean field, the exponents can be exactly calculated and turn out to be α=0,   
 

 
            

 

 
   η=0

Critical behavior and exponents of physical quantities (all to be intended) close to Tc

• Several transitions can be described within a mean-field theory: normal-to-superconductor transition in metals, 
smectic-A-to-C in liquid crystals, first order liquid-gas, nematic-to-isotropic liquid, and liquid-solid transition. 
Notice the difference between second-order Ising and first-order liquid-solid/nematic-smectic/liquid gas 
transitions: in both cases the broken symmetry is discrete, but symmetry under time reversal is different so that 
Ising must not have odd powers of  φ in the expansion of f, while the others in general do, which eventually 
drives the main difference between 2nd and 1st order behavior. 

• Mean-field is a valid description until the fluctuations in the order parameter are negligible, that is 

<( φ)2> <φ>2, which turns into (
 

  
        

    

  
             

 

    
        

       with A a dimension-dependent

constant, Δ the jump in the specific heat,     the T=0 correlation length, and     
    

  
      the so-called Ginzburg

reduced temperature. Now, for d>4        as T→   and MF is always valid. For d<4,        as T→   and
MF always fails because of thermal-driven fluctuations, to which quantum correlation-driven fluctuations can
add as in reduced dimensions and notably in 1D.

• Smectic A-to-C and normal metal-to-superconducting transitions resist because  

  ≈               respectively because of large values of   

Validity and failure of mean-field description

• When MF theory breaks down, one need a more microscopic description of the partition function Z and of free 
energy functional F[φ(x)], which is hared when the length scale set by   diverges. One thus resorts to
semiphenomenological field theories with the local order parameter treated as a classical continuous field
within the concept of coarse graining: 
-- the system is divided into many cells with size much larger than the microscopic length scale and containing 
sufficiently many particles for statistical purpose
-- φ(x) is averaged over the cell and becomes a classical variable
-- Z and H are written in terms of this new field, integrating over all possible paths of it in space
-- alternatively, discrete lattice field theories can be constructed pursuing the same goal: it is a matter of taste 
which to be used

Construction of field theory beyond mean-field

Renormalization Group Theory

• The Renormalization Group Theory introduced by K. Wilson is a powerful method to calculate critical exponents 
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• The Renormalization Group Theory introduced by K. Wilson is a powerful method to calculate critical exponents 
for non-mean field behaving transitions: it consists of a thinning of degrees of freedom followed by a rescaling 
of lengths. 

• Indeed, critical behavior of different physical quantities can be seen to scale in connected manners, so that not 
all the critical exponents are independent. Manipulating the homogeneity properties of the various correlation 
functions, one finds that 2ν=γ, γ=(2-η) ν, the so-called hyperscaling -that is involving the dimension d- relations 
β=(d-2+η)/2, γ+2=dν, α=2-dν. Eventually, collecting all together, α+2β+γ=2

• These relations are sufficiently closely verified. After calculations by RG  or simulational method and/or 
experimental determination, it generally turns out that 
-- critical exponents depend on d, symmetry and range of interactions but not on form or intensity of 
interactions
-- this fact introduces universality classes: as seen from far away, apparently different types of transitions share 
instead the same critical behavior

-- for example, in 3D one typically finds α~0,   
 

 
    

 

 
    

 

 
   η~0, with detailed differences driven by

symmetry and/or range of interactions
-- the amplitude of the temperature and field dependence is different above and below the transition: the two 
amplitude ratios have as well universal behavior, though their variation within the same universality class is 
more pronounced, so that predictions are more stringent

• Scaling leads to a few essential behaviors. It turns out that, once the gap exponent Δ λν=β+γ is defined, along
with the reduced temperature t and external field h, one has that

-- f(t,h)=         
 

     

-- φ(t,h)=       
 

     

-- χ(t,h)=        
 

     

That is, irrespective of all possible details, the most significant system observables share the same functional 

dependence on  
 

       though with different functions X and different critical exponents. The result can be

extended to the case in which the transition is driven by different external fields and might be reached along

different paths showing multicritical points. In this case, e.g. f(t,h,g,…)=         
 

     
 

         and so on, with Δg λg

ν
• The origin of scaling becomes apparent in the Kadanoff construction: 

-- the original lattice is divided into N'=    cells centered at a'=ba, with each cell centered at x containing    
sites so that x'=x/b
-- the original variable (say, spin) is replaced by a block variable s'(x') referring to the new lattice

-- the new external field h'(x') thus scales as   
     

 
  

 =     
 
  

 and     
  the exponent with which the

correlations in the variable coupled to field   
 behave

-- re-writing all the functions of the original variable in terms of the new block variable makes the scaling and 
universal behavior emerge
-- in momentum representation, the renormalization procedure corresponds to (i) thinning the degrees of 
freedom by tracing over fields φ(q) within a reduced range Λ/b<q<Λ, introding a new Brillouin zone with cutoff 
Λ/b: removal of the largest q-vectors eliminates the faster field oscillations; (ii) rescaling lenghts via q'=bq in 
order to revert back to the original BZ-size Λ; (iii) rescaling fields via  φ(q'/b)=ζφ'(q') so that faster oscillations 
are somehow restored 

• Notice that   
 can positive or negative. In the former case the correspondent external field grow after

successive rescalings and is said a relevant field, otherwise it dies and it can be considered irrelevant. Irrelevant
field do not affect the leading singularity at the critical point, however might give nonzero corrections to them, 
complicating the determination of critical exponents from e.g. experimental data

• The block variable and rescaling concepts of RG are operated via decimation and renormalization procedure. In 
essence: 
-- block density matrix is defined with new block parameters, for which recursion relations are set in and solved 
by iteration until a fixed point is found, that is a value of the parameter which do not change at the next 
iteration 
-- critical points are described by RG recursion relations
-- a fixed critical point can be stable (all points flow towards it, thus these points are called basin of attraction) 
or unstable (its basin of attraction is composed of itself alone) [In e.g. Ising, the stable fixed point describes all 
the finite temperature behavior, i.e. the paramagnetic phase, whereas the unstable fixed point describes just 
the T=0 Ising critical point]
-- a fixed critical point can be stable along some direction and unstable along others
-- universality comes along since all potentials and/or H in the subspace orthogonal to unstable directions have 
the same exponents
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the same exponents
-- linearization of recursion relations around unstable critical fixed points yields the same exponents as those 
describing the scaling of the free-energy density
-- comparison between the two provides critical exponents in terms of the parameters
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Given a functional form for the free energy, calculate all relevant physical observables and 
their critical behavior in mean-field

•

Reduce the number of independent critical exponents via scaling behavior•
Derive universal scaling behavior around multicritical points•
Operate decimation and renormalization procedure (in 1D, Ising example) with solution of 
recursion relations and determination of fixed points and critical exponents

•

Procedures
domenica 14 giugno 2015 08:41

   Order_Scaling_RG+Apply2DiscreteSymmBreak_Ising Page 29    



See Notes, Problems and Solutions by •
Professor Phillip M. Duxbury, Michigan State University, Course
PHY831: Graduate Statistical Mechanics From <http://www.pa.msu.edu/~duxbury/> 

http://www.pa.msu.edu/~duxbury/courses/phy831/Outline.html
Complete Lecture Notes and Problems for Part 4 http://www.pa.msu.edu/
~duxbury/courses/phy831/LectureNotesAndProblemsPart4_2012.pdf

1.

Complete Solutions to Problems for Part 4 http://www.pa.msu.edu/
~duxbury/courses/phy831/Solutions4_2012.pdf

2.

          In particular: 

Problems 4.2 page 209, 5.1 (a) and 5.3 page 283 in Chaikin and Lubensky•

• For application to the Ising discrete-symmetry breaking transition: See Notes, Problems and 
Solutions on these topics by Professor Phillip M. Duxbury, Michigan State University, Course
PHY831: Graduate Statistical Mechanics From <http://www.pa.msu.edu/~duxbury/> 
In particular:

Complete Lecture Notes and Problems for Parts 2 and 3 1.
Complete Solutions to Problems for Parts 2 and 32.

http://www.pa.msu.edu/~duxbury/courses/phy831/Outline.html

Proposed exercises
domenica 14 giugno 2015 08:41
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•

•
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The Green's function approach to superfluidity/superconductivity requires the 
introduction of matrix Green's functions, which include the off-diagonal long-range 
ordering appropriate to the boson or fermion system under consideration. Using a 
matrix representation, equations become quite similar to the case of a normal 
system. But:

•

Two self-energies appears, which are related to each other by functional 
differentiation via the so-called Hugenoltz and Pines theorem, ensuring a gapless 
character of the excitation energies above the ground state. Approximations to the 

1.
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character of the excitation energies above the ground state. Approximations to the 
self-energies which satisfy HP theorem are said to be gapless
Gapless approximation do not necessarily satisfy even simple conservation laws2.
Therefore, perturbative methods and related diagrammatic techniques must be 
handled with much care for superfluid/conducting systems

3.

15/06/2015 04:33 - Screen Clipping

As compared to normal systems, the structure of these equations reflects the same 
conservation laws, galileian invariance, zero-force and -torque theorems. However:

•

one more generalized force appear as a result of galilean invariance and the 
presence of a superfluid velocity which for slowly-varying condensate phase is 
related to the phase gradient: this force is the interdiffusion current, besides the 
normal-fluid velocity which again represents a potential vector able to drive 
transverse currents 

1.

four bulk (instead than one) and one shear viscosities appear, along with the usual 
heat conductivity, connected to corresponding longitudinal current-current, current-
superfluid velocity, superfluid velocity-superfluid velocity, and transverse current-
current response functions via generalized Kubo relations

2.

two densities: total density (conserved via continuity equation) and superfluid 
density, that is an related to an appropriate limit of transverse response function 
since the normal fluid density measures how much the fluid responds to a rotation 
or twist (a transverse probe)

3.

the superfluid density is different from the condensate density: at T=0, ns can be 
different from the total density n only because of boundary conditions (due to its 
meaning as a response to a twist), while the condensate density nc can be largely 
different from n because of interactions. A relation can be derived which connects 
ns, nc  and the single-particle spectral function embodying the interactions 

4.

besides zero sound (collisionless sound mode corresponding to shape breathing of 
Fermi sphere) and first (ordinary, collision driven density wave) sound, a second 
sound mode appears which is associated to an entropy wave, its speed vanishing 
with the superfluid density  as ns /nn  

5.
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Manage statistical-mechanics averages of moving systems via (linear or angular) velocity 
transformations

•

Identify the superfluid order parameter for Bose and Fermi systems•
Express normal (or superfluid) density as a response function and identify the moment of 
inertia as a response function (in fact, the relation between moment of inertia and normal 
density)

•

Express the relation between condensate and superfluid density, embodying the 
interactions via the single-particle spectral function

•

Similarly to normal systems, write microscopic hydrodynamic two-fluid equations for the 
superfluid and make the connection with TD-DFT

•

Similarly to normal systems, write equations for 1/2 and 1-body Green's functions and 
related self-energies

•

Derive first-order perturbative expansions within conserving and gapless approximations•

Procedures
domenica 14 giugno 2015 08:44
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Study the papers•
Wolfgang Ketterle, Ananth P. Chikkatur, and Chandra Raman, Collective enhancement and 
suppression in Bose-Einstein condensates. From <http://arxiv.org/pdf/cond-
mat/0010375.pdf> 

1.

C. Raman, R. Onofrio, J. M. Vogels, J. R. Abo-Shaeer, and W. Ketterle, Dissipationless flow 
and superfluidity in gaseous Bose-Einstein condensates. From <http://arxiv.org/pdf/cond-
mat/0008423.pdf> 

2.

Gordon Baym, D. H. Beck, C. J. Pethick, Low Temperature Transport Properties of Very Dilute 
Classical Solutions of 3He in Superfluid 4He. From <http://arxiv.org/pdf/1408.1619.pdf> 

3.

Invent easy forms for the single- and two-particle spectral functions for a fictitious system 
and calculate the normal and superfluid density, and the shear and bulk viscosities 

•

Repeat explicitly the calculation of the approximated self-energies for both Phi-derivable 
and Gapless approximations in Hohenber and Martin paper [Annals of Physics 34, 291 
(1965), Sec. E] and provide a diagrammatic graphical description

•

See Notes, Problems and Solutions on these topics by•
Professor Phillip M. Duxbury, Michigan State University, Course
PHY831: Graduate Statistical Mechanics From <http://www.pa.msu.edu/~duxbury/> 
In particular:

Complete Lecture Notes and Problems for Part 4 1.
Complete Solutions to Problems for Part 42.

http://www.pa.msu.edu/~duxbury/courses/phy831/Outline.html

•

Proposed exercises
domenica 14 giugno 2015 08:44
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From T. Giamarchi, Quantum Physics in 1D, Clarendon•
15/06/2015 00:41 - Screen Clipping

The theory of Fermi liquids due to Landau is very powerful in higher dimensions. In essence, it 
allows to describe the even strongly correlated many-particle system in terms of quasi-particles, 
that are the single particles dressed by density fluctuation (particle-hole excitations in and out 
the Fermi sphere) induced by the interaction with the other particles: because of bare 
occupation-number arguments, these are very long-living excitations, the longer the closer to 
Fermi surface. Increasing temperature (i.e. by thermal effects) or interaction energy in spite of 
kinetic energy (i.e. by quantum effects), the momentum distribution appears to progressively 
dig in below the chemical potential and built up above it with a progressively reduced jump Z at 
the chemical potential. In other words, the spectral function A(ω), that is a lorentzian, gets 
preogressively sharper as k approaches the Fermi wave-vector, and the total weight of the 
lorentzian peak represents the fraction Z of the excitation that is in the quasiparticle state, 
whreas the rest 1-Z is in a continuous background with no well-defined structure: this is the 
most apparent manifestation of correlations, which all the other can be traced back to.

•

The whole reasoning dramatically fails in 1D:•
No individual motion in 1D is possible, thus "collectivization" of the excitations occurs1.
Because only collective excitations can exist, a single fermionic excitation necessarily has to split 
up into a collective excitation carrying charge (like a density or sound wave) and one carrying 
spin (like a spin wave), with in general different velocities 

2.

In higher dimensions, a divergence of the response function is a signature of a phase transition 
to a differently ordered state. Divergence is obtained whenever nesting of the Fermi surface 
occurs, that is exists a range of Q wavevectors such that ξ(k+Q)=-ξ(k) so that ξ(k)-ξ(k+Q)=2ξ(k) at 
the denominator of the response function. This is always the case in 1D at the Fermi 
wavevector, as linearization of ξ(k) around kF shows: ξ(k) ~vF(±k-kF) for k~±kF. Moreover, if the 
divergence is in the particle-hole channel χp-h, this is a transition to a phase with either 
charge/density (Charge Density Wave) or spin ordering (Spin Density Wave, a kind of 
antiferromagnetic ordering). If the divergence is in the particle-particle χp-p channel, then the 
transition corresponds to a BCS-like pairing: in this case, the nesting is due to the pairing 
condition ξ(k)=ξ(-k) itself or else time-reversal symmetry. In higher dimensions, either χp-h or χp-p 

diverge. In 1D, one is always in a nested condition

3.

In higher dimensions, one may create a low-energy particle-hole excitation with infinitesimally 
small energy for q vectors wherever between 0 and 2kF. In 1D, the Fermi surface is a segment, 
and this operation is possible only at q=0 and q=2kF

4.

As a result, the average energy of a particle-hole excitation is linear in q and has a well-deined 
momentum. Also, the dispersion in energy is quadratic in q, going to zero faster than the 
average energy. Thus, in 1D particle-hole excitations are well-defined particles (not excitations 
dressing a particle as in Fermi liquids) with well-defined momentum and energy

5.

The essence of  bosonization method is the following:•
The original model of fermions with band curvature as in Fig. 2.1a is mapped into a model of 
fermions with the linear spectrum in Fig. 2.1b. A lower cutoff might be necessary to make the 
model well defined

1.

The density fluctuations, which are a superposition of particle-hole excitations, are described by 
an operator which is - in fact - of bosonic nature. Due to the large number of occupied states, 
the density-fluctuation operators turn out to satisfy boson commutation relations (recovering 
an intuitive result)

2.

Then, an effective single-particle operator is defined, one for each left and right linear branch. 
This can be expressed in terms of the density-fluctuation operator and turns out to be bosonic 
as well. Care is taken to globally conserve the number of particles. Then, new fields that are 
symmetric and antisymmetric combinations of left and right operators are defined

3.

When the original Hamiltonian is re-written in terms of these bosonic operators after taking into 
account all possible processes allowed in 1D, it turns out to be quadratic (!) as a result of an 
exact construction within the limit of large number of occupied states and the low-energy 
behavior accessed. H is characterized by two parameters, the so-called Luttinger parameters, 
which can be determined after theoretical perturbative methods or - even better - simulational 
methods:

4.

-- u representing the velocity of the excitations eventually renormalized by interaction processes 
with respect to its noninteracting vF value, and 
-- K embodying the correlations with K=1 referring to the noninteracting system, K<1 to 
repulsive and K>1 to attractive interactions
As usual, thermodynamic properties, correlation properties, pairing properties and so on can be 
derived and expressed in terms   of u and K. In particular, the discontinuity of n(k) at the Fermi 
wavevector disappears, and n(k) acquires a power-law singularity: a signature of Luttinger-
liquid, 1D behavior. The DOS also goes to zero as a power law

•

When spin is considered as well as charge/density, the number of fields doubles, while the 
charge/density and the spin channels remain separated (within this low-energy limiting 
behavior) and phase diagrams as complex as that in Fig. 2.9 are possible

•

Concepts
domenica 14 giugno 2015 08:44

   1D Luttinger liquids-Bosonization Page 37    



15/06/2015 00:41 - Screen Clipping

   1D Luttinger liquids-Bosonization Page 38    



   1D Luttinger liquids-Bosonization Page 39    



Express single-particle operator for left and right branch in terms of original fermionic 
operators

•

Construct the conjugate Luttinger fields as symmetric and antysimmetric combinations of L 
and R fields

•

Build up H in terms of conjugate Luttinger fields for different g-ologies•
Express relevant physical observables in terms of u and K Luttinger parameters•

Procedures
domenica 14 giugno 2015 08:45
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Study the paper •
P. Pedri (Orsay), S. De Palo (Trieste), E. Orignac (ENS-Lyon), R. Citro (Salerno), M. L. Chiofalo
(SNS Pisa),  
Collective excitations of trapped one-dimensional dipolar quantum gases. Journal-ref: Phys. 
Rev. A 77, 015601 (2008). From http://arxiv.org/pdf/0708.2789.pdf or

14/06/2015 23:29 - Screen Clipping

Model with spin [Ch. 2.3] leading to the phase diagram0.

Choose from T. Giamarchi, Quantum Physics in 1D, Clarendon, one out of the following 
applications of bosonization method to physical systems, and perform the related 
calculations:

•

Proposed exercises
domenica 14 giugno 2015 08:45
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Spin 1/2 chains [Ch. 6]1.
Interacting fermions on a lattice [Ch.7]2.
Coupled fermionic chains [Ch.8]3.
Disordered systems [Ch. 9]4.
Interacting 1D bosons [Ch. 11.1]5.
Impurities in Fermi liquids [Ch. 11.2]6.
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From T. Giamarchi, Quantum Physics in 1D, Clarendon, •

Concepts_temp [will be replaced by dr. De Palo notes]
domenica 14 giugno 2015 08:45
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See Notes, Problems and Solutions on these topics by •
Professor Phillip M. Duxbury, Michigan State University, Course
PHY831: Graduate Statistical Mechanics From <http://www.pa.msu.edu/~duxbury/> 
In particular:

Complete Lecture Notes and Problems for Part 1 1.
Complete Solutions to Problems for Part 12.

http://www.pa.msu.edu/~duxbury/courses/phy831/Outline.html
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domenica 14 giugno 2015 08:46

   Simulational methods for MBP Page 49    

http://www.pa.msu.edu/%7Eduxbury/courses/phy831/Outline.html
http://www.pa.msu.edu/~duxbury/
http://www.pa.msu.edu/~duxbury/courses/phy831/Outline.html

