120 E. P. GROSS

These considerations are exploratory and make no
with current systematic many-body techniques. Still
outlook, and it is possible that i'n the course of time
will play a more important role in many-body theory

pretence at competing
they provide a different
transformation groups
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THE MICROSCOPIC DESCRIPTION OF
SUPERFLUIDITY}

GORDON BAYM§
University of Hlinois, Urbana, Ilinois

1

INTRODUCTION

IN these lectures I shall discuss the microscopic view of the phenomenon of
superfluidity. My aims will be twofold: first, to show how macroscopic
superfluid concepts, such as the superfluid velocity and the normal mass
density, can be defined microscopically; and second, to show the deep unity
underlying the descriptions of the superfluidity of low temperature He* and
the superfluidity of electrons in superconductors.

The most convenient language for these purposes is that of second
quantization. In this formalism the operator y/(r) acting to the right on a
state of an N particle system removes a particle from the space point r,
producing a state of an N—1 particle system. Similarly the adjoint operator
¥'(r), acting to the right, adds a particle to the state, at point r. The creation
and annihilation operators obey the commutation relation

VW E)FY W) = s(r—r') [

where the upper sign is for bosons and the lower for fermions (always).
Suppose that ¢o(r), ¢,(r), ... form a complete orthonormal set of single
particle states. It is occasionally convenient to expand ¥(r) and y'(r) in

terms of the operators a; and a that remove and add particles with the wave
function ¢,(r). These expansions are

WO =T éman  ¥0) = 3 40l - [2]

The operators g, and a} obey
aga'Fala, =5, -[3]
$ This work supported in part by the National Science Foundation Grant NSF-GP4937.
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122 G. BAYM

A particularly useful case is when the ¢, are plane wave states (in a box of
volume ¥ with periodic boundary conditions), Then (2] becomes

V0=V WO =V
I shall usually work in the Heisenberg representatio

this representation the states remain fixed in time while
develops in time according to the equation of motion [h

; oX(r)
ot

n. Recall that in
cach operator, X,
= 1, always]:

= [X(1), H(")) ..[5]

where H(f) is the Hamiltonian of the system. In the case that H is inde-
pendent of time, then from [5],

X(r) = e'Mi e tht, ..[6)

where X shall always denote the operator at ¢ = 0. As an example, for free
particles

H= ;a,a;a,, -[7]
where
e, = p*/2m; ..[8]
then
a,(t) = e~'*r'q,, ...[9]

and the time-dependent cication and annihilation operators are given by

Y(rt) = V1Y Jer-esng
» ...[10]

Yi(re) = VY e ier-agl,
»

2

CONDENSATES

The crucial feature of all superfluid systems is the existence of a con-
densate, that is, a single state, or mode, that is macroscopically occupied.
To l{nderstand this in detail, let us first review some properties of the cor-
relation functions of normal, i.e., non-superfluid systems. Consider the

single-particle correlation function?!

G(rt, r't’) = YH(r't'Wirt)), osldd ]

Wwhere the expectation value is in the grand canonical ensemble:
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E{‘..ﬂfﬂx.»ﬂf/!(ﬂN l X I EN) "I‘(’(”J,ﬁ,x
X m il T ey 2]

E’}"ﬁ&}i»”iﬂi -
f = 1/KT and u is the chemical potential, The function G*(rt, vty is
essentially the amplitude for removing a particle from “equilibrium’ at s, 1
and returning to equilibrium by replacing a particle at v/, 1.3
For normal systems, the amplitude G*(rt, ¥'t’) fulls 1o 2610 as the space~
time point r', ¢’ becomes widely separated from the point r, 1, A few ex~
amples will illustrate this. For free particles, we find from [/0] that

G‘(", ',i‘l) e V-l ;‘ll'(f"")c"lap(l*l') (ﬂ:ﬂ,), ,”[13]

since <a}.a,> vanishes unless p’ = p, ic., if one removes a particle of
momentum p from a free particle state, one can return to the same state
only by adding back a particle with the same momentum p. Now (a;'a,) is
just the expectation value of the number of particles, N,, of momentum p in
the system; for a grand canonical ensemble
{ala,) = N, = [S~WF1]"!, ...[14]
Let us look at the behavior of G<(r0, r0) as | r~#' | - c0. In a classical
system N, = e™#(*»~# and so by a simple integration (V'Y - 2m)~* &%p):
4

G=(r0, r'0) = (27)~2 [d>p'? (r=")=#0*/2m pu
- ne-ml'-"lI/Z" '“[15]

where n is the average particle density, Thus G= falls off as a Gaussian with
a characteristic length equal to the thermal wavelength, 2w = (h/mKT),

Similarly for T = 0 fermions, where

l’ ¥4 < P_r,
N, = ..[16]
0, D> Py

} The equal-time correlation function G<(r0, r'0) is proportional to the one-particle
reduced density matrix. To see this note that a state | £ N') with the properly symmetrized
wave function ¥E, N(ry, . . . rx) can be constructed in second quantization as

|EN> = (N)"*[dr,...dry¥E, N(ry, . . . rat(ry) . . yt(rn) | vac),
where | vac) denotes the vacuum. Then
YO | ENY = (N-DN"¥dr, .. .dry¥E N(r, ray . .. ea)H(rs) . . . $¥(r) | vac),
and by repeated use of the commutation relations one finds
CEN| Yt W) | EN> = Nidry...dra¥E,N*(r', P2y . o ., P)VE NP, P2y« . . n).

Thus G <(r0, r'0) is simply the one-particle reduced density matrix, times the volume of the
system.



124 G. BAYM

we find
G=<(r0, r'0) = 3nx"2 (sin x - x cos x) 17

x=p;|r—r'|. Again G< falls to zero for | y_,
;!:chmthe Fef;u" wavcl!:nslh, hip,. 7= b ompared
It is also easy to verify .fox: these two examples that G<(rt, r't’) vanishes
. | 1- t'| » . In fact, it is a general property of normal systems that
G<(rt, ¥1)~0,as | r—r'|or | =1 | - 0. The correlation function

G (rt, ') = (Y(rep'(r'e)) ...[18]

exhibits the same behavior.

Now let us consider the free Bose gas. At T = 0, all the particles are in
the lowest energy state of the box; this state is macroscopically occupied.
Thea

[N. Pp=0
N, = ...[19]
0, p#0
and we find from [/3]
G=<(rt, r't") = N/V. ...[20]

In contrast to the previous examples, G< remains constant as r', t' becomes
separated from 7, 1. For T < T,, the Bose-Einstein condensation tempera-
ture, the ground state remains macroscopically occupied, u = 0, and

dJ’ el'-(r-r’) —iep(t—1')

G (’f, ”‘I) = no+ (27;)3 e‘"—l

.[21]

The second term vanishes as | r—r’ | or | t—1’| » 0. However the n, =
No/V term remains non-zero.

What is the difference between this and the previous cases? In a normal
system the *hole” that one creates by removing a particle at r, ¢ diffuses out
(like the wave packet of a localized particle) and it becomes less and less
probable that one will be able to return to the original state by adding a
particle at 7, ', On the other hand in the condensed Bose gas the following
possibility can occur: the particle removed at r, ¢ can come from the con-
densate, the P = 0 mode; the relative amplitude for this possibility is (no)*.
Then when a particle is added at #’, ¢ it has amplitude (n0)* to fall into the
condensate, returning the system to its original state, The amplitude for

tWo successive possibilities is thus (n})? = no, independent of the
Separation of r from # or 1 from #’. As long as the p = 0 state contains a
Macroscopic number of particles, this possibility has a finite probability
amplitude,

If the Bose gas is in some external potential and ¢ (rt) denotes a single-
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particle eigenstate of the potential, where do(rr) is the macroscopically
occupied ground state, then )

G(rt,rt) = ;N,Mﬂ)ﬁ (')
= Nodo(rt)$3(r't)+G<(rt, r'r), ..[22]
G (rt, r't') = Nodo(r)p3(r't)+ &> (rt, r'r’).

The condensate contribution, the N, term, remains finite as r',t’ becomes
separated from #,f; on the other hand, the non-condensate contribution (2
has the same behavior as in a normal system. Note that Ny | ¢o(rt) [ is
the local density of condensate particles.

Now, as was originally proposed by Onsager and Penrose, this same
structure persists in an interacting superfluid Bose system that is in, or not
too far from, equilibrium; there is a single-particle state, characterized by a
wave function W(r¢), which is macroscopically occupied. The occupants of
this state are the condensate and W(rr) is called the condensate wave function,

or superfluid order parameter. It is defined by the relation
G2(rt, 'ty = W(r)¥*(r't), <.[23]

as either | r—r’ | or | t—1’| becomes very large. Then | ¥(re) [ is the density
of particles in the condensate.

In a system at rest, the condensed mode is the P = 0 state and ¥(rt) =
Jnoe ™", The energy w, is in fact the chemical potential y of the system.}
In real He* at T = 0 the density of particles in the condensate n, is esti-
mated to be between 4, and 11% of the total density # = 2-2x 1022cm~ 13,
Consequently n, ~ 10*'cm™3, which is quite macroscopic.

The single-particle correlation functions for a superfluid Bose system in
or near equilibrium thus have the form

G3(rt, r't)) = ¥(r)¥*(r't’)+ C2(rt, r't"). ..[24]

We can think of [24] as arising in the following way. Imagine that ¢, N
is a “typical” state in the ensemble where N is the average number of par-
ticles. Then the condensate wave function, which is the relative amplitude
for removing a particle at r, ¢ from the condensate, is essentially given by

W(re) = <, N=1|y(r) |, N -.[25]

where | {, N—1) is the same state as | {, Ny, only with one less particle in
the condensate. Similarly

$ To see this recall that u is the energy required to add a particle to the system at
constant entropy. The occupied condensed mode is a zero entropy configuration and
thus adding a particle to the condensate does not change the system's emrgpy; hcl?oe
the energy w, required to add a particle to the condensate must be x. In an mtsrncun;
Bose system u is no longer zero; for example in liquid He* at 7 = 0, p = -7:16°K.
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Yre) = KGN e | G M=,

Now | & ) and [ {, N2 1) are physically the same States;
fower particles in the condensate can lead to corrections
ovet the total number of particles in the condensate,

often writes

w[2]

the one extra oF
' only of order one
For this reason one

Y(re) = yirn)

with the undenstanding that the states on the left i
particke than the states on the right, Similarly

Y¥r) = CAGHN
One can then write the correlation function G+ ag

G(rt,r'1) = ;G\ NV O N=1) ¢ N=1 V(e |4 N L [29]

w[2n

ave one fower condensate

H\[JS]

Thea comparing with [24], we see that G< s the sum in [29], excluding
the term " = .
In the free Bose gas

W(rl) = V7lag+ V=1 5 oirrin, «.[30]
P*O

The Bogoliubov method} for solving the weakly interacting Bose gas is to

replace @, by the c-number (Np). In analogy it is convenient to think of

the operator y(rt) in general as the sum of two terms

v(rr) = (Y(re)) +9(re) [31]

where §(rt) removes non-condensate particles. From [31), @) =0
and we may write

G=(rt, Pty = (Y(rt)) YN (1)) + P 1YW (). -[32]

The latter term G< describes the fluctuations of the condensate.§

The argument that the existence of a condensate leads to superfluidity
is essentially the following. Consider a state of the free Bose gas in which
the particles are all condensed into a state with a finite momentum p- Such
& state, in which the wave function of the condensed mode is proportional
10 €77, would be one in which there is a macroscopic motion with all the
particles flowing with a velocity » = p/m. Similarly a condensate wave
function in the interacting system of the form

Wirt) = gmner=ton | | [33]

} See A, Abrikosoy ¢/ al., Ref. 1, )

§ One should not be perturbed at the appearance of expressions that seem to violate
Particle Conservation; the condensate acts as a reservoir of particles and the “missing”
Particles are always 10 be found in the condensate,
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cofresponds to a state of uniform MACtosCo G
0. This velocity is the superfluid velocity. ‘The fundarmienial identification

of the superfluid velocity is thus 1/mi times the spatial rate of changs of (he
phase of the vondensate wave function, Genetnlly, if one writes

W(rt) = % nylrry)t M)

where S and o are real, then (he local superfiuid velocity is (st least ip
situations whero § and m, vary slowly in SPAace)!

v,(r1) = VS(r1)m, [ 15)

It 18 Important to realize that unlike In normal Systeims, ons can haye
relative flow of the superfluid with respect to the walls of the contuiner and
stlll have equilibrium, The superfiuid veloclty Is thus an additional macro.
scopio variablo In a superfluid.}

[The grand canonical ensemble, as in [12], has the unpleasant characters
istic of including states with different superfluld velocities, Since the super.
fluid velocity is a macroscopic observable one should, in fact, in describing
a state with a given temperature, chemical potential and superfluid velocity,
choose only those states from the grand canonical ensemble with the given
v,. This point will become slightly less abstract later.?]

The reason that superfluid flow is stable is that it is a coherent motion
of a macroscopic number of particles. To slow down the flow requires
coupling to all (or most of) the particles simultaneously. In contrast to a
system such as a normal metal where thermal excitations slow down a
current one electron at a time, the excitations in a superfluid, the phonons,
rotons and vortex motions in He*, have vanishingly small probability, at
slow superfluid velocities, of disturbing the superfluid flow.

While the phase of the condensate wave function determines the super-
fluid velocity, the condensate mass density mn, is not the same as the super-
fluid mass density p, of the two fluid picture. For example, in He* at T = 0,
P, = p = mn which is 10 or 20 times greater than mn,. The reason is that
due to the interactions among the particles, there is a finite probability for
non-condensate particles to be carried along with the condensate in the
superfluid flow.

Superconductors also have condensates, formed of the Cooper pairs of
electrons.® Recall Cooper’s model of two electrons of opposite spin, outside
a filled Fermi sea and interacting just with each other via an attractive inter-
action; the important feature of the model is that the electrons have a
“bound state” of total energy less than twice the Fermi energy. In a super-
conductor, where all the electrons are interacting, there is a similar lowering
of the energy from that of the normal state due to a *“pairing” of electrons

} Technically, states with non-zero vs (measured with respect to the walls) are only
metastable; they have, however, an astronomical lifetime except for temperatures very
¢lose to the A transition,

127
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of opposiée Spin on PO osite‘ sides of the Fermi surface. The collection of
irs forms the condensate, in the sense that there is a finjte amplitude fo

adding two opposite-spin particles and having them pair. Mathematicallor

the correlation function .

G5(ryty, Pat2s TitY, 12t3) = ('I/'r(rilz')'lfl(r;t;)cpl(rltl).//t(,-ztz» ..[36]

(the arrows denote spin orientation) in a superconductor does not vanish
as the primed variables become separated from the unprimed variables, as
in a normal system; rather ,

G5 sty ot Bty D) > PG B Gt mat), (7]

The function f(ry#y, r2?,) plays the role of the pair wave function: ;
with [25] we can think of f as n; in analogy

flet, ') = <G N=2 |y, (r)g,(r'') | ¢, N ---[38]

where | {,N) is a typical state of the ensemble and | &, N=2) is the same
state, only with one fewer pair. Alternatively one can write

St 1) = Y (rt)g 1 (r'e)). --[39]

The physics behind [37] is the same as in a Bose system [cf. Eq. [23]];
G; is the amplitude for removing two opposite-spin particles at ry,t; and
73,t; and then returning to equilibrium by adding two opposite-spin particles
at ry,ty and r3,7;. In a superconductor there is a finite amplitude Sryty, rot,
that the two removed particles come from the condensate and an amplitude
J*(rit], r3t;) that the added particles fall into the condensate. The total
amplitude for this process doesn’t fall to zero as the primed variables become
separated from the unprimed variables.

It is tempting to think of the condensate as being formed by a Bose con-
densation of two-electron “molecules”. This picture isn’t really valid for
the reason that the size of the pairs, measured by the spatial extent of
S(rt, r't), is hundreds of interparticle spacings; thus there is tremendous
spatial overlapping of the pairs.

It is important to realize that in a Bose system the condensate is formed
purely kinematically—even a non-interacting Bose gas has a condensate—
while in a superconductor the existence of the condensate is due to the
dynamics of the system. This is a prime reason why the theory of super-
conductivity remained so elusive.

We define the condensate wave function for a superconductor by

W(rt) = f(rt, rt) = Y, (rt)(r)). ...[394]

In a superconductor carrying no current the total momentum per pair is
Zero and

P(rt) = e~ 24 | W(r) | ...[40]

e
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(the energy required to remove a pair is twice the chemical potential of the
electrons). In a state with a condensate wave function proportional to
¢4 each pair has total momentum 24;; a superconductor in this state carries
a supercurrent proportional to ¢?.

Thus underlying the superfluidity of both He* and electrons in a super-
conductor is the existence of a condensate. In both systems there exist
equilibrium states of superfluid flow, characterized by a condensate wave
function whose phase varies in space.*

3

STATISTICAL MECHANICS OF MOVING SYSTEMS

One striking property of liquid He* is that if one begins to rotate a
bucket of He* at T = 0 very slowly, then the fluid doesn’t rotate with the
bucket but rather remains at rest with respect to the laboratory; at finite
temperatures, the moment of inertia of the superfluid is well reduced from
the classical value. Similarly, the ability of a superfluid to flow through a
channel without friction can be alternatively regarded as the inability of the
channel, in moving past the fluid, to carry the fluid along with it. In order
to study these effects microscopically, we should first review how one de-
scribes the statistical mechanics of systems with moving walls.

The answer is really very simple; the probability of an energy state
occurring in the grand canonical ensemble is proportional to e #(Z~*M
where E’ is the energy of the system measured in the frame in which the
walls are at rest, u is the chemical potential in that frame, and N is the
number of particles in the state. To see this, note that the probability of a
given state occurring is the same to both an observer sitting in the laboratory
and one moving with the walls. But in the frame in which the walls are at
rest, the probability is proportional to e # ~#M_ Recall that never in a
derivation of the Gibb’s ensemble® need one ask if the walls define an
inertial frame; all one uses is that they are at rest.

The problem is to find H’, the Hamiltonian of the system in the frame
in which the walls are at rest. We are interested in two cases: translation of
the walls and rotation of the walls. The translating case is very simple;
consider first a single particle, for which H = p*/2m. Then the MCIC’S
velocity in the laboratory frame is p/m. In a frame moving with velocity u

(the primed frame) the velocity is
v =v—u. [41]

% One can think of the electrons as moving with an average velocity g/m. However
in real superconductors, which are not translationally invariant, the use of the bare mass r.n
to define a velocity is somewhat arbitrary; one might equal_ly well use .the band mass m®*.
The physically important quantity is the momentum per pair, the grad.lent of the phase of
the condensate wave function, and this does not depend on the choice of mass. See J.

Bardeen, Ref. 4.
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Thus the momentum in the primed frame is

P =p~-mu w[42]
" B
H o= s = 2m-p°u+imu g w[43)

This equation gives the Hamiltonian in the moving frame in terms of the
coordinates of the laboratory frame. For a many-particle system the mo-
mentum of the particle is p; = p;~mu so that

- z: 21"::"'*‘* ;.:lv('i“n)“z Prut+i ; mu?,

since coordinate differences are the same in both frames. Writing the total
momentum as

Piw z, | J <. [44]
and total mass as
M= E my ..[45]
[]
we have
H' = H—P-u+3iMu? ...[46]
and
P = Z pi = P—Mu. ...[47]
i

The transformation to a uniformly translating coordinate system is a Galilean
transformation.

One can derive these transformation laws in a very formal fashion using
second quantization. The question is: how is ¥'(r"), the annihilation operator
in the primed frame, related to y(r) in the unprimed frame? From [4] the
field operator in the primed frame can be written as

Y'(r) =V"tY aler. ...[48]

1 4
Now removing a particle of momentum p in the primed frame is the s?me
as removing one of momentum p+mu in the unprimed frame, Thus 4, =

%yt ma and

V)= VY a,dCm" = e ™ TY(r).
r
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At = 0, ¢ = rand we may write
V() = ey ), .[49)
Similarly
W) = @Y ). .[50)

It is left as an exercise to derive [46] and [47] by writing ' and P’, which
depend on y’ and ', in terms of ¢ and ¢*,

To discover the Hamiltonian in a rotating frame it is most straight-
forward to use the Lagrangian. For a single particle one has

v = p—u, (51
where now
UmOXrsoxr,;

@ is the angular velocity of the rotating frame and primes refer to quantities
measured in the rotating frame. The Lagrangians £ and £’ in the two

frames must be equal (to within possible total derivatives with respect to
time). Thus

Z'(v') = ZL(v) = {mv? = Im(v’ + u).
Hence

’

P= %‘i = m(v'+u) = mo = p; wi152]
v

the momentum of a particle is the same in both the fixed and rotating frames.
Then

2

’ ’ 7ot P
H=-%4+pv ="—~pu. ...[53
P 2 pu [53]

Since pu = o(rxp) = @ L, where L is the angular momentum, we
have the result

H = H-oL. .[59

This equation is also valid for a system of many particles interacting through
central forces; L is then the total angular momentum.

We conclude that to describe a system whose walls are moving linearly
with velocity u, the relative probability of a state of energy E and momentum

Pis
probability oc g™ PLE~ P+ (dma?-mN] w:{35])
When the walls are rotating with angular velocity @ we have instead

probability oc e PLE=eL=uN], ...[56]
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At this point I would like 'to fiigress for‘a moment on the transformation
roperties of elementary excitations. As is 4well kr.xown, Landau® pictures
51 ¢ low-lying excited states of superfluxd He® as being composed of several
(non-intcracting) elementary excitations, the phonons and rotons, In the
frame in which v, = 0 an excitation of momentum p has an energy

e,; for
small p, & = 5P where s is the first sound velocity. Thus in the fra:ne in
which v, = 0 the total energy and momentum are given by

E = E0+§N,e, ”.[57]
P =Po+YN,p ..[58]
»

where E, and P, are the energy and momentum (actually zero) of the ground
state, and N, is the number of excitations present of momentum p- In
thermal equilibrium with v, = 0 and the walls at rest

(N, = [P —1]"1, ...[59]

Query: What is the energy of an excitation in a frame in which v, # 0?7
Then, we apply the results [46] and [47] with u = —u, to find

P' = P+Mv, = (Po+Mv)+Y N,p ...[60]
} 4
and
E' = Eg+) N,t,+Po,+ 1 Mv?
P
= Eg+) Ny(e,+pv,) ...[61]
F 4

where E; = Eo+ Pyv,+3Mv?. From [60] and [61] we can draw two con-
clusions. First, from [60], increasing N, (the number in the v, = 0 frame)
by 1 increases P’ by p; thus the momentum of an excitation in the primed
frame is the same as in the frame with v, = 0:

p’ = p. ..[62]

However, increasing N, by 1 increases E’ by g,+ p'v,; thus the energy of
an excitation in the frame with v, # 0 is}

€ = B4 ..[63]

% Hidden in this analysis is the assumption that the energy ott the excitations d.o not
depend on the velocity of the walls; for by simply making a Galilean transformation to
generate a superfluid velocity, we also change the velocity of the walls by @s. This assump-
tion, which is valid for slow relative motion of the superfluid and walls, wou{d not be va}xd
if, for example, the relative motion of the superfluid and walls generated excitations which
in turn interacted with the excitation whose energy we are examining.
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In thermal equilibrium

(N,) - [eﬁ(ep +p(vs=-on)}__ 1]— 1

..[64]

where v, is the velocity of the walls and g+ p(v,—v,) is the excitation
energy measured in the frame in which the walls are at rest.

It is instructive to contrast the results [62] and [63] with the behavior
of a slowly moving impurity, such as a He® atom, in He*. In the frame

where », = 0 an impurity excitation of momentum p has an energy of the
form

&, = &9+ p*[2m*, ...[65]
where m* is some effective mass greater than the bare mass, my, of the im-
purity. From [65] the velocity of the impurity is
v = Ve, = p/m*; ...[66]
the momentum of the excitation is therefore
P = m*v = mp+om*o. ...[67]

The m;v is the momentum of the particle of mass m, travelling at velocity ».
As the particle moves it causes a flow pattern in the He*, as in Fig. 1, which
carries a momentum Sm*v; this is the second term in [67]. The total mo-
mentum of the excitation is thus that carried by the particle plus that carried
by the He*.

Assuming the He* without the impurity to be in its ground state, the

energy and momentum of the He* plus impurity in the frame where v, =0
are :

E = Ey+e, ...[68]
P = Py+p. ...[69]

Fia. 1. Flow pattern induced by a slowly moving hard sphere in a fluid.
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Then in the frame where v, 3 0 one has

E' = E+Po,+ }(M-+mo?

= E(;+(a'+P°ﬂ'+‘&m‘”3); “.[70]

as before Eg = Eo+Po'o,+3Mv?. The tricky point here is that the im-
purity adds a mass m, to thc? system, so that the total mags in the presence
of the impurity is M+m;. Similarly,

P'=Po+(p+mp,).

.71
Thus in the frame where o, 3 0 the impurity excitation has a momen[turr::
P =p+mp,
and an energy
g = &+ po,+3m 2, .[72]

An impurity excitation of momentum P in the frame where v, # 0 therefore
has an energy

’ om* om*
Ep = 3;‘*";7 p'”s—iFm(”.z, ..[73]

aresult quite different from [63]. The reason for this difference is that unlike
Landau’s excitations, the impurity adds a mass m; to the system. For
m, = 0, [73] reduces to [63].

One can get some insight into [73] by calculating the velocity of the
impurity in the frame where v, # 0:

v = Ve, = (p+5m*v,)/m* .[74]
or

P = mp+om*(v—v,). oo 41|

This says simply that the extra momentum carried by the He* depends on
the velocity measured with respect to the superfluid velocity; the reason is
that when v = v, the particle is at rest with respect to the superfluid, it
induces no flow pattern and hence the superfluid carries no extra momentum
due to the particle. _

Arguments similar to those for the impurity determine the transformation
properties of particle and hole excitations in superconductors.

4

NORMAL MAss DENSITY AND MOMENT OF INERTIA
OF A SUPERFLUID

Consider a very long cylindrical pipe, as in Fig. 2, containing a supcrﬂ}lid
in equilibrium, flowing with superfluid velocity »,. From the point of view
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of the two-fluid model, “in equilibrium” means that the normal component
is at rest and in equilibrium with the walls of the Pipe; the momentum of the
fluid is carried entirely by the superfluid component. For small o, the
momentum density, g, is related to v, by

g =pv, .[76]

where p, is the superfluid mass density. For a pure superfluid at T = 0,
Ps = p = mn, the total mass density of the fluid; p, decreases with increasing
temperature and becomes 0 when the fluid becomes normal. Our aim in
this section is to calculate the two-fluid model parameter p, microscopically,
in terms of the properties of the equilibrium fluid at rest.

This is most readily done by transforming to the frame in which o, = 0;
in this frame the walls move with velocity # = — v, and the momentum density
of the fluid, according to [47] is

g = Ps¥s— PV = p,u, .[77]
where the normal mass density is defined by
Pn = P=Ps ...[78]

Our method for identifying p,, and hence p, microscopically shall be to
calculate the momentum carried by a fluid in which v, = 0 and the walls are
moving with velocity u, and compare with [77].

Using the result [55] for the density matrix in the presence of walls
moving with velocity u, we may write the expectation value of the momentum
density operator g(r) as

) tr e-ﬁ["-!-li-iMl’-nN]g(r)
<g(')>ll = tr e-’["_’..+*u.1_“~] ’ "’[79]

the momentum density operator is m times the current density operator:
, 1
g(r) = mj(r) = 51 W' (W)} - (V¢ (Om]. ...[80]

The total momentum is given by

P = [drg(r). ...[81]

[},t )
I.L )__>z

/

4]

7
==

FiG. 2. A very long cylindrical pipe containing a superfluid in equilibrium,
flowing with superﬂuid' velocity 95, (See Section 4.)
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We want to include only state_s with v, = 0 in the average j . thic s
possible for the gegmetry of Fig. 2, where u is in the 7 dirgectlix(l)n[?gl,yt?;st l;s
. [ L1 - . 3 N 5 e
pipe has *“open ends”, Le. extends infinitely far jn the positi .
z directions. positive and negative
To calculate p, we need {g(r)), to first order

" ' in u. Ex ]
first order in u (taken along the z direction) we have panding [79] to

@D = @D+ PGPS~ (g, (P 3T,
where the expectation values on the right are in the o
rest, v, = 0 and ® = 0; in this system {g(r)d
we needn’t worry about the non-commutability
derivative with respect to u of the traces in [79])

Before proceeding further it is necessary to develop some properties of
correlation functions defined in thermal ensembles. Let A(?) and B(t") be
operators, and consider the correlation function

{AW—=CAOD} {BE)=<BAYS = CADB()y —CAt)y B
From [/2] and [6] we have

...[82]
quilibrium system at
= (. (Because [H, P] =0
of g.(r) and P, in the first

CAWDB()) = %tr{e"‘”"“") € A4(0) e T B(r')}
..[83]

tr{[e™ =N olHt 4(0) ¢~ 1R? GB(H-KNY][ o~ A(H- KNI ()]}

=

N

where

Z = tr g /H-#N) ...[84]
is the partition function. Using the fact that tr XY = tr YX, [83] becomes
CAWB(E)

= % tr{[e"m"‘”)B(t’)][e"‘N HEHIB) 4(0) e iHE+if) e-hnN]}

= (B(t") * ¥ A(t+if) e PN, ...[85]
where .
A(D) = e 4(0)e ™" ...[86]

for complex, as well as real 7. For the case that A commutes with N, [85]
becomes

{A()B()) = (B)AE+iB)). ...[87]

In equilibrium < A(f)B(¢') depends only on the.diﬁ'erence t—.;' a:nd 5&1)521)5
and (B(t")) are independent of time; introducing the Fourier tran
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Q(w) = dt e“"""”[(A(t)B(t'))-(A)(B)]
J-®
o o --.[88]
R(w) = . dt =0 B(¢)A(t)y — (BX4)],
we find from [87] that
0(w) = : dt &= O[CB()A(t+ 1) ~ (BY(AY]
- : dt ¢8O0 B A®)Y — (BYCAY]
or
Q(w) = ¢°R(w). ..[89]
This relation is known as the “detailed balancing” condition.
Using [88] we can then write
Y 5(®)
Q@) = 742 -[0)
where
Yol) = 0@)-R@ = [~ dd Qa0 50D 091

Thus, we find that in the grand canonical ensemble, when [4, N] = 0,
' @ —im(t=1")
CADB(YY —(AXBY = | 42 Tar@)e” #70 .[92)
w27 l1-e
A simple corollary of this theorem is that

s @© —ip
J' ? A= CAWBE)y —CACBY) = J' "—“’5!“"—’[ dte™™

™
0 -0 27[ l_e 0

% o I ® doTel@  pos)
—p i ©

Since P is a constant of the motion [P(f) = P(0)] we can writc [82] as

G = ij ? (=) [ OPLEY) ~ @y Pl - [94]

]

=i j dr' I—u d(—1') [g(r0)g.(r't")) —<g:(r) (g rPu
e .[95]

on using [81]. Then [93] implies




138 G. BAYM

= B ° dm sz(" '-
9 M), J dr J‘mz;—w\'@u ..[96]
where

Yir v, @) = J- LAt g r), g ey, ..[97]

For a translationally invariant system, this function depends only on r—p’
except when 7 and r’ are near the boundaries of the system. To caIculaté
p, for a macroscopic system, these boundary regions can be neglected and
we can replace Y, by its value for an infinite system. Then

dk ! ik (r—p’ *
€9:(r)) = J.(zn)a J. dr’ e e=r J‘_m % TZL(:(D) -..[98]

where Y, (kw) is the spatial Fourier transform of Y
tegration depends on the geometry of the system.

For the cylinder of Fig. 2, extending infinitely far in the positive and
negative z directions, the z’ integration gives 2nd(k,); this delta function sets
k., = 0in Y,,. For large R, the radius of the cylinder, the x’ and y’ integrals
weight the integrand of [98] sharply around k. and k, = 0; in the limit of
R — oo the result of the x" and y’ integrals is a factor (2n)26(kx)5(k,). The
important point to notice is that for the infinitely long cylinder, first we must
set k, = 0 and then let k, and k, approach zero. Hence

z:(r, r, w) The »' in-

@ = tim lim '[ do XAk, . [99]
keky=0k,»0 J_ 27T

comparing this result with [77], we see that the coefficient of ¥ on the right,
which is independent of r for a very large system, equals p,:

® do Y, (ko)

...[100]
w27 @

pp= lim lim I
Kayky =0 ky = 0
This identification gives us a microscopic prescription for calculating t}§e
normal mass density in terms of the correlation function Y,,(kw), which is
evaluated in the equilibrium ensemble with the system entirely at rest. In
a moment we shall simplify [700]. )
Before that let us consider a second situation. Suppose tha:c the cyhpder
has closed ends at z = +3L. Then as one moves the walls with ve}ocxty u
along the z direction one expects the entire fluid to follow, not just t_he
normal component; it is physically impossible for the .superﬂuld velocity
to remain at rest when the closed container moves. Wl'th these boundary
conditions, the states in [79] must have v, = u. This expeflment correspgnc;s,
in fact, simply to a Galilean transformation on the entire system, and the
momentum density should be given by
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<gx>u = pu,

where p = mn is the total mass density of the system.
The calculation of {g.» in this case parallels that just done,

the closed ends require us to keep L finite while letting R — oo
may let L - oo. The result is

139
..[101]

except that
; finally we

e [P do Y. (ko)
Py = lim | — 27
0. ke 0 k,.tl,nio .[_m 2n w -[102]

Shortly we shall prove that the coefficient of u in [102] must equal p, as we
argued above, ’

The limiting procedures in [200] and [102] can be carried out if we first
write Y, (kw) as a sum of its transverse and longitudinal components
Since Y, ;(kw) transforms as a tensor, and k is the only vector on which ii

can depend, it must be a sum of a term proportional to §,; and a term pro-
portional to kk;/k%. We write

ke kk
Yiy(ho) = ZE XMk, o) +(6,,-F1) Yk@).  ..[103]

The first term is the longitudinal component; it is parallel to k in both
indices, e.g., Zi:k‘(k,k‘,/kz) = k;. The second term, the transverse component
is perpendicular to k in both indices, e.g., 2h8iy~kik,fk?) = 0.
Now observe that since k2 = kf+kf+k‘f,
 Jm  lim kk—’: =0 ...[104]
while

k.k,
2E=1. ..[105]

lim lim
k=0 keky—»0 Kk

Thus from [100] we find as the microscopic definition of p,:

(o T,
p, = lIim | 9o X'(ko) ...[106]
k»0]_ o2
furthermore the equality of [102] to pu says that
f* 0 L
p = lim dw I_(ﬁﬁ’.) ...[107]
ks0)_o27 o

The fact that the transverse and longitudinal components of thc_ current-
current correlation function, as they enter [106] and [107], are different is
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a unique property of a superfluid, One can take as a mivroscopio eritorion
for superfluid behavior that p, as caleulated from [700] be less than p, We
shall see later that exactly the same criterion applies to a superconductor;
if o, < p then the system exhibits a Meissner effect,

The functions T* and Y are m® times the Fourier transforms of the
correlation functions of the longitudinal component of the current with
itself and the transverse component of the current with itself, Recall that
any vector can be written as & sum of a curlfree, or longitudinal, part plug
a divergence-fiee, or transverse, part, If w(r) is any vector function then

ol o, \ __Y.‘"‘(".)__
wi(r) = Vj.dr 4"]-;:'.' w[108)

bas 0o curl, while w'(r) = w(r)—=w'(r) has zero divergence, In terms of
the Fourier transform w(k) of w(r),

SIOED "-kél (k)

OED (&u-’%‘i : (). ~[109]
Now from [103]
ko) = 3 ST ko)

the kX /k* picks out the longitudinal component g% of the momentum
density, so that we can write

ko) = [* dreme-o Pdre""‘"""([gf(rt), qir)d:  ..[110]
similarly
YTk, ) = (= dreioe-o Pdre"'"""’([gf(rt), JgEoD. [0

By symmetry the correlation function of g with g* vanishes. . ‘
The longitudinal component of the current is that part associated with
density changes. One sees this from the continuity equation

%:') +V:j(r1) = 0, -[112]

where p(rr) is the density; if the current has a longitudinal oomponet&tr then

Vi # 0 and so p changes in time. A transverse current satisfies Vj© =0

and is therefore not accompanied by any density changes in time. .
We turn now to the proof of [107]. The starting point is the expectation
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value of the equal-time commutation relation between the density operator
plrt) = Y (et)ye(rr), and the current operator,

o)), VJ(r'D]) = 1V 5(r = r'In/m; w[113)

this is readily derived from [/], Fourier transforming in space and time,
[713] becomes

k -Iﬂ da) p.J])(kw) = k’n/m w[114]
o ;

where {[p, /1> (kw) denotes the Fourier transform of {[p(r?), J(r't')]). But

from the continuity equation

’"’w<[/’~j/]> (k, @) = ;ktru(’“‘)) - ")YL("- w), w[115]

Substituting [715] into [/14] and cancelling the k* from both sides we
derive

" il Co) o oy .[116]
02 :

this relation is known as the longitudinal or fsum rule, Eq. [07] is just the
k - 0 limit of [116].

The primary difference between the two experiments we have discussed
is that in the first case, that of the cylinder with “open ends", the motion is
carried out with o, remaining zero, i.e., with the phase of the condensate
wave function remaining constant in space. In the second case the superfluid,
by virtue of the closed ends of the cylinder, must respond to the motion of
the walls. Indeed, from [49] we see that the particle annihilation operator,
¥, in the laboratory frame is simply ™" times ¥’ in the system travelling
with the walls. But in that frame (Y’ = ¥,, a constant. Therefore in the
laboratory frame

¥(re) = CY(r)), = ™Y, =i

Thus the effect of a Galilean transformation is to change the phase of the
condensate wave function by mu-r: and hence v, in general transforms into
v+, as it should, and in our example it goes from 0 to a.

The difference between p, and p is thus due to the response of the con-
densate to the motion of the walls. This can be made most explicit by return-
ing to the frame in which the walls are stationary. In the situation of the
cylinder with open ends the condensate has a velocity », = —w, and the
momentum density [76] is p,v,; for the closed cylinder, the momentum
density and the condensate velocity are both zero.

Eq. [106] provides us with a starting point for calculating p, and hence
p, microscopically. We have yet to show, however, that the existence of a
condensate implies that p, is non-zero; there does not exist a rigorous proof
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that this must always be so, but a little later we shall indicate the connection

in a few simple situations.
We turn now to calculating the moment of inertia of a container full of

superfluid. The moment of inertia tensor f; is defined, in terms of the ex-
pectation value of the angular momentum L of the system in a bucket

rotating with angular velocity , by
Sy = [%%}22] il ...[118]
Using [56] we find, as in [82],

Sy = BIKLLY - <L) {Lp] ...[119]
where the expectation values are for the bucket and superfluid at rest in the
laboratory. Now using the facts that

L= fdrrxg(r), ...[120]
and that Lis a constant of the motion, and paralleling the calculation leading
to [98], we find .

dk i , (® do Y ko),
Sy = J.(Zn)’ J'drfdr TV imalal ,[-wﬂ_h(-(o_)’ s 121]

¢, is the completely anti-symmetric tensor, and summation over repeat.ed
indices is assumed. Let us consider a cylindrical bucket rotating about its
axis, which we take to be along z, and calculate ., its moment of inertia
about the z axis. From [/03] Y, contains terms proportional to 6, and

to kk,/k?. This latter term in [121] leads to an r integral

{ dre™(rx k),
which vanishes when the integration is symmetric about the z axis. In the
5,, term we write the #’ integral, in the limit of infinite volume, as

fdre ™"y = i(Vi)m [dre*™
= iV )n(21)*8(k);

.[122]

then integrating by parts with respect to k we have
® dw Y7(k,»)

Ju - iJ"ir ezalexnllrl {(Vk)m [e,r' .[—co 2n w k= 0.

The V, of YT vanishes by symmetry as k — 0. Then using the deﬁniu:on
[106] of p, we find that the moment of inertia of a very slowly rotating

bucket is given by
S, =fadr (r*=z%p,. ...[123]

This is the standard expression for the moment of inertia except that it is
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proportional to the normal mass density, rather than p as it would be in a
normal system. Thus in a superfluid the moment of inertia is reduced from
its classical value. As the bucket is rotated the superfluid remains at rest in
the laboratory, and only the normal mass density follows the bucket. At
T =0, p, and hence J,, vanishes; the entire fluid remains at rest as the
bucket is rotated. It is the same p, that determines the moment of inertia
as determines the momentum density, (p — p,)v,, carried by a superfluid flow.

It is left as an exercise to show from [727] that the moment of inertia of
a long cylinder of superfluid, as in Fig. 2, for rotations perpendicular to the
symmetry axis, is given by the classical value.

Eq. [123] is valid as long as the bucket rotates slowly. Beyond some
critical angular velocity w,, it becomes energetically favorable to create
vortices in the fluid, which lead to an increase in the moment of inertia.
w,, is given by (h/mR?) log (R/£), where &, the “coherence length”, is of
the order of a few Angstroms at low temperature; for R = 1 cm, w,; ~ 1073
sec”!, As o is increased, .£,, keeps increasing until w reaches a second
critical value, w,,, where £, becomes the classical value, [dr(x*+y?)p;
beyond this point the fluid is normal.$

At very low temperatures, the source of the normal mass density is the
thermal excitations —the phonons and rotons. The excitations come into
thermal equilibrium with the walls and follow any motion of the walls.
Landau’s calculation of p, illustrates this clearly. The momentum of the
excitations is

Py =Y p(N .[124]

where in thermal equilibrium {N,) is given by [64]; taking o, = 0 and ex-
panding to first order in v,, the wall velocity, we have

a 1
Py = - B = — .[125
<P gjp(pv,‘) 5o, P’ [125]
and thus
- _[dr P8 _1
Pa @ 3 o, P ...[126]

For T 5 0:6°K, p, ~ (T/Tp)*, where the phonon “Debye temperature” T,
is about 18°K. Incidentally, the same result for p, emerges from a rather
tedious microscopic calculation in the Bogoliubov approximation.

5

LINEAR RESPONSE THEORY

In this section I shall develop the general formalism for describing the
first-order response of a system in thermal equilibrium to an external per-
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turbation. This formalism will enable us to study the criterion for a Meissner
effect in a superconductor.

Consider applying a time-dependent perturbation, H' to a system initially
in a state | /, 7o) at an early time. For example, in a charged system the per-
turbation might be an electromagnetic vector potential, for which

' (Pi—eA(rl)/C)z_ P_2
H g: 2m 24:2:11

ez
c

- -f J' drj(r)-A(r)+2m -

J' dr A*(r) p(r). wlizn

In the Heisenberg representation in which the operators change in time
according to H, the system’s Hamiltonian without H’, the state of the

system at a later time 7 is
|ty = U, 1) | i, 1) ..[128]

where (T denotes the time-ordered product):

U(t,t)) = T (exp { = 'f ' H’(t')dt’})

t
=1-i f H'(t"at ..[129]
to
to first order in H’. The expectation value of an operator X at time 7 is then
X@ar = <G t| XO |1, £ _
= i, 1o | UTI(t, o) X(OU(, 1) |, 10D ...[130]

where X(¢) develops in time according to H. For a system initially in thermal
equilibrium we have

X(t))g = KU, ) X(OU(, 10)) -.[131]
i ight is i 1 ensemble.
where the expectation value on the right is in la therma
To calculate the linear response of X to H' we use [129] and
14
U=, 1) = 1+iJ’ H'(t)dt'
to
to write
.[132]

X)) = <X@))—i ﬁ([x (0), H'(¢)]Har'.

This is a general Kubo relation; it expresses the linc.:ar tra.ms;;lort p:icl)i;;;g:;:
of a system in terms of expectation values (on the l’lght)fl; tt eHe’c! o
ensemble. Note that [/32] gives the retarded response ot A to J1°; o
is determined by values of H'(¢’) for times earlier than 2.
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As an example, let us calculate the electromagnetic current induced by a
weak vector potential A(rt) coupled to {he system through [127). Since the
velocity of a particle of momentum p, in the presence of A is

_ Pi—eA(rit)/c

v
i - -..[133]
the electromagnetic current operator, o ev,, is
2
. e
I(r) = ¢j(r)—— A(r1)p(r), .[134]
mc

where j(r), the “paramagnetic” current, is given by [80]. The second term
on the right, the “diamagnetic” current is already first order in A, and so to
calculate {J) to first order in 4, we can take {p(r)) = n. Thus

T34 = ei(r)d =" Are)
mc
iez ' 7 r L) L) 1! P gt ne 2
-2 f dt fdr LD, 460D - A= ), . [135]

where we have used [732] for (j(rf)) and have let fy = —co0; also we
assumed that (j) vanishes if 4 = 0. In a moment we shall use this result
to discuss the Meissner effect in superconductors, but first let us see the
connection between this approach and the calculations in the previous

section.,
Consider the response of a system to a perturbation
H'(t) = —m[dr j(re)-u(re). ...[136]

For u(rt) = u(r), independent of space, [136] becomes —P(t)-u(t); this
coupling simulates a time-dependent velocity of the walls. The induced
momentum density is, to first order in u

m{j(r)), = m{(r)), = o+im? f dr'dt’{[j(re), j(r't)]> - u(r't). ...[137]

Suppose that
u(r't') = v iot g’y ...[138]
where 5 is a positive infinitesimal small number whose effect is slowly to

turn on u(r't’) [note that e” — 0 as 7 = —o0]. Then expressing the Ui .J}:!
commutator in terms of its Fourier transform Y;(kw’) and doing the

integral we have

m{jrt)y, = m(r)),—e* " oMy, (k, 0+ inuy [139]

where
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zu(k,w+iq) = J‘w @ l‘l(_kw_')_~ “.[140]

ce 2% O+in-0’

a summation over j is understood. Our previous result [99] for {g,(r)) is
thus seen to be a special case of [/39], in which w+in — 0, followed by
k = 0. In general, the @ — 0 and then k — 0 limit of the response to a per-
turbation simulates having a time-independent, spatially uniform perturba-
tion in the density matrix.

One should also note that normal mass density p,, involving Y7, is the
response to an @ — 0 and then k — 0 transverse u, while the response to
such a u that is longitudinal is the total mass density p. Essentially, per-
turbations proportional to the transverse current do not excite the superfluid
while those proportional to the longitudinal current do.

We turn now to a description of the electromagnetic response of a
system. The question we ask is: given a weak externally applied vector
potential A(rt), what is the total vector potential 4,,(r¢)? The point is that
the external potential induces currents in the system which themselves
generate electromagnetic fields. If we define the induced vector potential by

A (rt) = A(rt)+ A, 4(rt), .[141]
then from Maxwell's equations
i P _4n
(;5‘—5 v )A..‘(n) =& e 142]

where {(J(rt)) is the expectation value of the electromagnetic current of the
system. [By taking {(J) we are calculating the average induced vector
potential.] The problem then is to calculate {J(r¢)) in terms of A(r't"). If
one neglects the field fluctuations, the coupling of the system to 4, is given
by [127], with A, in place of A. [Replacing the electromagnetic potential
by its space and time dependent average leads to results which are accurate
to lowest order in (v/c)?, where v is a typical particle velocity in the system.]
The induced (J(rr)) is then given, to first order in A, by [735], with 4
replaced by 4,,,.
Let us assume that A(r?) is of the form

A(rt) = e*rHer D 4(kw) ...[143]

where A(kw) is transverse, ie. k-A(kw) = 0. Then both (J(rf)) and
A, (rt) will have the same space and time dependence as A(rs) and will be

transverse. From [/35] we have

J(rt)) = -~ '—:—:—; [nm + 5" (k, @+ in)] A®(r1), .[144]
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where

.[145]

Finally, solving for A,,4(kw) in terms of A,,,(kw), from [744] and [142], and
using [141] we find

A (ko) = A(kw) /[1

’ T, ’
17k, 0 +in) zf” ‘Z’E.I_(’Eﬂ)_
—w 20 w+in—-w’

..[146]

The denominator of [146] plays the role of a transverse susceptibility,
One should note that this differs from Maxwell’s definition of the transverse
susceptibility; his doesn’t have an (w+in)? underneath the 4rne®. The
reason for the difference is that Maxwell’s transverse dielectric function
relates B and H; while

_4ne*{nm+x"(k, w+ in))
m*{(w+in)* —c?k?) ]

B(rt) = Vx A, (rt), .[147]

it is not true, except in the static (w+in — 0) limit, that H = V x A.

We consider now the case of a weak static, very long wavelength external
magnetic field applied to the system; this corresponds to a time-independent
A. Then from [/46], we have

_ 4ne*{nm+ x"(k, 0)}
Al = A(K) /[1 ialie ] .[148]
Let us 'write, as for a Bose superfluid, that
© T,
—~lim x7(k,0) = lim f e XKL e [149]
k=0 k=0 ) 27

If p, is less than p = mn, as it is in a superconductor, then the system will
have a Meissner effect. This is easy to see; as k — 0 [/48] becomes

kz
A k) = ——— Ak ...[150
Iot( ) k2+(l/Az) ( ) [ ]
where the length A is given by
1 _ dnne’p, 151
A2 mc?p
and
Py = p—p.: [ 132]
A is in fact the penetration depth. Note that as k — 0 the total electro-

magnetic potential approaches zero as k? times the external potential; thus
weak slowly varying external magnetic fields will be excluded from the
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material. To see that A is the penetration depth, take the cross product of
both sides of [150] by k and Fourier transform back to space. Then

(V2 =A"?)B(r) = V2 H(»), .. [153]

when H(r) is slowly varying in space. For a constant H(r) the solutions for
B(r) fall off exponentially with a characteristic length A inside the system;
the detailed solutions of [153] depend on the boundary conditions.”

Thus the criterion for a Meissner effect, p, < p, is exactly the same as
we found for a neutral system to have a reduced moment of inertia. It is a
fundamental characteristic of superfluids that p,, defined from the transverse
current correlation function, is less than p. In all systems

lim yX(k, 0) » —nm,
k=0

as a consequence of the longitudinal sum rule®; at 7' = 0 in a pure system
p, = 0. The origin of the formal similarity between the Meissner effect and
the reduction of the momenta of inertia is the following: a uniform magnetic
field # can be described by a vector potential A(r) = —rx3#/2. The
coupling [127] is to first order in #°

which is the same as a “—@-L” term for a rotating system.
We should also note that [ 744] reduces to the London equation

2
D)) = -%f:; A (rt) [154]

in the limit of fields that vary very slowly in space and time. As London
showed this equation leads to zero electrical resistance since

I _ pame’ piopy .[155]
ot p m

where E = —¢~10A4/dt is the electric field. Thus (J) is constant in time in
the absence of electric fields.
In a normal system

lim x7(k, 0) = —nm+bk? ...[156]

k=0

where b is a positive constant. Then [748] becomes

A(K) .
Atot(k) = 1 +47:be2/mzcz H "'[157]

this reduction of A, from A is just the Landau diamagnetism of normal
electrons.
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6
WHY IS p,<p IN A SUPERFLUID ?
To answer this question we begin by noting that
Y, (—k, ~) = Y;(ko); ...[158]
the proof follows trivially from the definition [97] of Y. Thus we can write
®do Y, (ko
X::(K,0) = — J. 4R L 0) ...[159]
o T (/)]

since Y,, is an even function of k. Next we use the detailed balancing con-
dition to write

2 @
Yr——f(e"ﬁl = _mVJ.drdr'e'M'_")J. dt e G ()i D). ...[160]

For simplicity we shall restrict ourselves to T = 0. Then

Grdjr't)) = 3 <0 | j(r) | mde " EnEN=p [ 5.y [0)  ..[161]

n
where | 0> is the ground state, E, the ground state energy, and the sum is
over a complete set of states; the time dependence was extracted by use of
[6]. Substituting [161] into [760] and defining
jox = J.dre‘*"j,(r) ...[162]

we ﬁnd

2n

2
T..(ko) = =2 T |<n i [ 0> 28@+Eo-E),  ...[163]

and
Leo(koo) = —7'—';'2-2 <n Ej"‘E‘» : ..[164]
A n— L0

Now we must study the nature of the states entering this sum in the
k- 0 limit®> First of all, the momentum of the states | n) for which
{(n | Jex | 0> is non-zero must be k, since J-x removes momentum —k from
the ground state. Next we note that lim j_, = P,/m and ¢(n|P,|0) =0

k=0

(since the ground state has total momentum zero); invoking continuity we
argue that

'l‘im°<n lji-x| 0> =0. ...[1644d]

Thus as k — 0 the numerators in the sum [164] tend to zero. The only
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states | ) contributing to the sum are states of momentum k whose energy
tends to Eo as k = 0.

In He* the low-lying excitations from the ground state are phonons, the
long wavelength longitudinal oscillations of the condensate; their energy is
sk, where s, = 238 m/sec, is the sound velocity. Furthermore it can be
argued® that the matrix element {n | j_, | 0) between the ground state and
a state containing two or more phonons tends to zero at least as fast as k.
Thus the only | n) entering [/64] in the k — 0 limit is the state | k) con-
taining one phonon of momentum k; hence in this limit

2m* | <k ]j-a | O |2
2z k)o e A k =
X::(k, 0) T ...[165]

The essence of the argument now is that the one phonon states exhaust
the sum rule in the longitudinal part of y, and contribute nothing to the
transverse part of y. The point is that the matrix element (k |7-x | 0 must
be a vector parallel to k. Thus the z component, (k| j_, | 0>, must be pro-
portional to k,. If k is orthogonal to the z axis then <k | j_, | 0> vanishes,
and as k — 0,

Xe:(k, 0) = x7(k, 0) = p, = 0. ...[166]

P, vanishes because there are no low-lying “transverse” states; a transverse
current can’t excite a single longitudinal phonon. The matrix elements for
the transverse current to excite a state with two or more phonons or rotons
vanishes too rapidly with & to contribute to p,.

On the other hand if k is along the z axis,

xu(k’ 0) = xL(ks 0) = —nm, .-.[]67]

from the longitudinal sum rule. The one phonon states exhaust this sum
rule, and we infer from [/65] and [167] that for small k,

| <k |jE | 0) | = (sk¥Vn/2m)t. ...[168]

The transverse current jT, has non-vanishing matrix elements between
two one-phonon states. At finite temperature where there are thermal ex-
citations present, such matrix elements lead to a non-vanishing contribution
to p,.
The situation in a superconductor is entirely analogous; one also has
longitudinal excitations of the condensate, known as the Anderson modes,
which, as in He*, contribute to x* and not to x” at zero temperature. There
are also states corresponding to the excitation of particles from the Fermi
sea. However these states in a pure superconductor are separated from the
ground state by an energy gap 2A and hence at T = 0 they contribute to
neither y* or 7 in the long wavelength limit.

In summary, the reason that p, is less than p in a superfluid is that the
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only low-lying states are longitudinal excitations of the condensate, which
contribute a finite fraction to the longitudinal sum rule but do not contribute

toxTask — 0.

7

A RELATION BETWEEN p,, | ¥ |* AND THE FLUCTUATIONS
OF THE CONDENSATE

While both the superfluid mass density and m | b 4 lz, the condensate mass
density, are non-zero in a superfluid, they are not equal. I would like to
derive, for a Bose superfluid, a very general relation due to Josephson,!®
between these quantities and the fluctuation spectrum of the condensate.

As we discussed earlier the momentum density accompanying a flow of
superfluid is

{g> = puv.. -.[169]

This momentum density is the response to a spatial variation in the phase
of the condensate wave function. If

¥(r) = 50, ..[170]

where S(r) is infinitesimally small and very slowly varying in space, then
[169] is equivalent to the statement [cf. 35]

{g(r)> = p,VS(r)/m. 171

To derive the relation between p, and | ¥ |* we calculate the response of
{g> to a variation of ¥ using the linear response theory developed in Sec. 5.
The fundamental maneuver is to include a perturbation in the Hamiltonian

H'(t) = [dryt(r' ') (r't") ...[172]
where {(r't’) is an infinitesimal c-number function. [¢ plays the role of a
particle source.] This term is essentially a handle on ¥ since by varying {
we produce variations in W(rf), as well as variations in {g(rt)).

Assume that {(rf) is a long wavelength perturbation that is turned on
very slowly, that is,

Urt) = *riotgrp ...[173]

where n is a positive number which eventually will go to zero. In analogy
with [139] this perturbation produces a variation in the condensate wave
function given, for n — 0, by

SW(rt) = 8Y(re)) = e*r—ior J'w _‘é_o_’.._AM_ L, ...[174]

o 2% o+in—w’
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where the function

A(kw) = f dre~*(r=r) J‘ :o dt e [y (re), VA1) we] £75]

is the spectral weight of the one-particle Green’s function, A describes the
response as in [174] of the condensate to an external driving term, and hence
it tells one the spectrum of condensate oscillations, Letting w+in — 0 we
have

» |[© do’ A(ko')
o¥(r) = —e'*r — =
() = —e L 1o k) [176]
The momentum density induced by ¢ is similarly
® ’ t '
5g(r)) = —e*r j ‘;‘: <[g» V'/ail?(kw) r [177:’

as w+in — 0. The function in the integrand is given by

{[g:¥'Dke) = ",’c’;“’ f dre=¢=r) f " de O, Y1)y,
i ...[178]

Next we substitute this expression into [/77] and do the frequency integra-
tion, which produces a 6(—1¢’). But from [1] we have

o), ¥ (D> = W )dsr—r)

= Y5é(r—r). . -..[179]
Thus [177] reduces to the quite simple result
&Kg(r)) = —e*" (km[k*)¥3L. ...[180]
[One can equivalently derive this result from considerations of gauge in-
variance.]
Let us write the variation of ¥(r) as
¥(r) = Yo+ 06¥(r) = 50 ¥,; ..[181]

by a judicious choice of the phase of { we can arrange for S(r) to be re.al. in
the long wavelength limit. Then combining [/76] and [/80], and writing

kS¥(r) = —iVO¥(r) = VS()¥, ..[182]

we find

«© -1
5oV = Ti:'z—df VS(r) [ f 59@] . [183)

—w 2T

In the long wavelength limit this equation must reduce to [/7/]. Thus com-
paring the coefficients of V.S(r) we see that as k — 0
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J'” d_wA(kw)_mzl‘P[z_

~0 2% k?p, ’ [ 184]

this equation is the desired relation between the condensate density, the
spectrum of condensate fluctuations and p,.

We can use this relation, which may be regarded as a sum rule on A(kw),
to deduce some simple results on the long wavelength fluctuations of the
condensate. First we note that as a consequence of the equal-time commuta-
tion relation [/], A obeys the sum rule

f T A0 k) = 1. - [185]

—w 27

The values of w for which A(kw) is non-zero are the possible changes of
energy of the system when one adds a particle of momentum k or removes
a particle of momentum —k. What happens when one adds a particle of
momentum k is that it drops into the condensate, increasing the energy of
the system by u, the chemical potential; but to conserve momentum the
particle, when dropping into the condensate, must either create an excitation
of momentum k (further increasing the total energy by the energy of ex-
citation) or else absorb an excitation of momentum —k that is already
present. At small k and very low temperatures, the only possible excitations
are phonons, whose energy is sk. Thus the possible energy changes of the
system produced by adding a particle are utsk. Measuring energies with
respect to u we then expect 4 to vanish unless @ = + sk, so that!!

A(kw) = 05(w— k) +a}5(w + 5K). ...[186]

[The process of removing a particle of momentum — k leads to two terms of
the same form.]

The two sum rules [784] and [185] enable us to determine the coefficients

in [186]; the result is
2 2
% = M_z]_‘f'k_liﬂ = 1-q. ..[187]
p

As k — 0 the 4 may be neglected and we find

A(kw) = ﬂ;{%’-’i‘ [6(e>— sk) — 8(co + sK)]. ...[188]

This result can be used to deduce the number of non-condensate particles
N, = <a}a,) for small k. The basic relation is that

= |7 do Ako), ..[189]
M _f_m 2nfo—1’
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this may be derived by using the detailed balancing condition, as in [90],

remembering to measure energy with respect to y. Th e
for small k #. Then [188] implies that

2 2
No=m Y[ 1
k ok e""—l+i : ..[190]
At T = 0 where p, = p we find
ms ms
No= |¥|? = E‘E%’ .[191]

while for finite T (KT » sk) we have

_m*| ¥ |’KT
pk?

Eq. [790] implies immediately that there can be no condensation in two

dimensions at finite temperature,'? or in one dimension ever. The density
of non-condensate particles is given by

Ny ..[192]

dk
(2n)®

We see from [792] and [/91] that this integral converges at the origin in
three dimensions, but diverges in two dimensions at ﬁni.te T, and always
diverges in one dimension. The only way that n’ can be ﬁ{ute (it must always
be <n) in the divergent cases is for ¥ to be zero; that is, there is no con-
tion. .

dcmﬁco;sults [190-192] are based on the form [186].f9r A, to which there
may exist corrections at finite temperature. ngcvcr it is easy tlo shtﬁ“;'th?tt
[792] provides an exact lower bound on N, in the long {;va!:c tcng i ;;:lr h
and so the proof that ¥ = 0 in one or tWo dimensions at r31 ; ;mkp e
becomes rigorous. The first step is to notice that the integrand A(kw)/w

[184] is always >0. Furthermore, for all w,

n=n—|¥|= N,. ...[193]

B2 coth ’-’é‘-’ - po [;,7,1_—1-”] >1; . [194]
thus
Aho) [;;,;!;_—,ﬂ] > ), . 1199)
Integrating over all » and using [785] and [189] we see that for all

Pets 4. . ATL A% reinsl
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Then from the long wavelength sum rule [784] for A, we find the desired
! {

long wavelength inequality:
2 2
VY |2KT
Nt rsds
* pk? k -[197)

as k — 0 the } may be neglected.

The sum rule [784] is valid only as k — 0. For general k
however that A4 must obey the inequality: 8 we can show

[ fodie), i)
02 k3

..[198)

This is a special case of the Bogoliubov inequality,'® which is based on the
observation that if C is any operator, then [cf. 90]

Tg cf(w) > 0’

1=e™®
and hence
[
J' do Xe,ct(@) 5 .[199)
—0d® W
Now letting
CwmpD-B|" do Y, pt(@)* [ i‘_"_"!!:,'f.(_ai'), ...[200]
— 27 w I A 4

in [199], where D and B are arbitrary operators, we find
© do Yppt(@) [* do’ Xy pt(@) o, | [* do Xy, pt(e) r; . [201)
~0l2f W “o 28 o e

this is a form of the Bogoliubov inequality. To derive [195] we let D = gy,
the particle annihilation operator, and let

- il
Bwk-|dr e (v,

Vv

Yp, pt (@) = A(kw);

Then

from the f~sum rule [//6]
J“” do Yo, 0") 0 pmi?;
cwdl O
and from [/77] and [180]:
[« 4o, /() o v,

L P Py
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The inequality [201] then reduces to [198]. The inequality [798] combined
with [196] leads to the result that for all k - quality [798] in

m? | ¥ |2KT
Net+i > Ky ...[202]

which in itself_is sufficiently strong to prove the lack of condensation in
one and two dimensions at finite temperatures.
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1
PHENOMENOLOGICAL DESCRIPTION

IN this chapter we shall discuss the problem of treating non-equilibrium elec-
tronic states of a metal. The kind of question we would like to answer is:
What are the electric currents and heat currents which flow when the System
is driven out of equilibrium by some external agency such as an electric field
or a temperature gradient? We shall limit ourselves almost entirely to the
situation which is the one that is most often encountered in practice (not in
optical phenomena, however) namely external disturbances which vary
“slowly” in space and time and which are “weak”. By a “slow” variation
we mean that the external disturbances change by a very small amount over
distances of atomic dimensions and over times comparable to all character-
istic times of the system. The “weakness” of the external disturbances means
that we shall limit ourselves to studying the response of the system to terms
linear in appropriately chosen measures of the disturbances (for example,
the electric field, or temperature gradients).

In addition, we shall for purposes of general discussion neglect the con-
tributions of the positively charged ions, which form a background to the
electronic motion. For metals, except at very low temperatures, these con-
tributions are usually negligible because the ionic velocities are much less
than the electronic velocities; charge and energy transport are due almost
entirely to electronic motion. It is not difficult to include the ionic motions.'
(and so deal with a system of several components), but we shall not do this
here.
The phenomenological equations are suggested by the following' argu-
ment. If the system were in equilibrium no currents would flow.” As is well
known,? in equilibrium the temperature T and chemical potential 4 must be
uniform throughout the system. If the variation of the driving forces is
slow in space and time, then we may imagine that the sy stem”aoqmrzs 3
“local” equilibrium, which may be characterized by a “local” T and 4
which are slowly varying functions of space and time
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