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Abstract. – A density-functional theory is established for inhomogeneous superfluids at
finite temperature, subject to time-dependent external fields in isothermal conditions. After
outlining parallelisms between a neutral superfluid and a charged superconductor, Hohenberg-
Kohn-Sham–type theorems are proved for gauge-invariant densities and a set of Bogolubov-
Popov equations including exchange and correlation is set up. Earlier results applying in the
linear-response regime are recovered.

Experiments on confined Bose-condensed gases have revealed a rich variety of dynamical
behaviours. These include elementary excitations of low-lying shape deformation modes [1],
propagation of sound waves in both the condensate and the thermal cloud [2], Josephson-like
oscillations in double condensates [3], creation of vortices [4], phase dynamics from various
atom-laser configurations [5] and Bloch oscillations of a condensate in an optical lattice [6].

While mean-field theories suffice in most cases to describe the observed behaviours, con-
densates can now be created where effects beyond mean field can be explored, by tuning
almost at will the scattering length and hence the condensate self-interaction energy [7] or
else by approaching the critical temperature for Bose-Einstein condensation. Along these
lines a Time-Dependent Density-Functional Theory (TD-DFT) for superfluids is a suitable
framework to treat their dynamics with inclusion of exchange and correlation.

For a many-electron system in the normal state the foundations of the theory come from a
set of theorems by Runge and Gross [8,9], which have been extended to superconductors at zero
temperature by Wacker, Kümmel and Gross (WKG) [10]. In applications to normal electron
systems in the linear-response regime, the limitations to low-frequency phenomena have been
conceptually overcome by Vignale and Kohn [11]. Their current-density formulation of TD-
DFT embodies plasmon dispersion and damping as well as transverse-current fluctuations,
allows a unified treatment of the damping of collective excitations from the Landau and mode-
coupling mechanisms and yields microscopic generalized-hydrodynamic equations [11,12].

A similar scheme has already been developed for the dynamic linear response of super-
fluids [13], extending to inhomogeneous systems and to finite-frequency phenomena Landau’s
hydrodynamic equations in the two-fluid model. The present letter concerns the underlying
foundations of TD-DFT for superfluids. The proof of the relevant Hohenberg-Kohn-Sham–
type theorems parallels the WKG derivation for superconductors and one of our results is
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a “dictionary” which translates vector and scalar potentials, Maxwell equations and the like
from a charged to a neutral fluid characterized by spontaneous symmetry breaking. We also
allow for finite temperature in isothermal conditions. This preludes to a specific choice of the
reference system for the TD-DFT mapping, which is described by a set of Bogolubov-Popov
equations including the non-condensate density.

Introductory material. – The dynamics of a system of interacting spinless bosons confined
in a static potential and evolving from an initial equilibrium state at time t0 is driven by the
Hamiltonian

Ĥ(t) = T̂A(t) + V̂V (t) + Ŝη(t) + Ŵ (t) . (1)

The system is subject to an external vector potential A and to scalar fields V and η. We
have T̂A = −(1/2m)

∫
drψ̂†(r, t) [h̄∇ − iA(r, t)]2 ψ̂(r, t), V̂V =

∫
drV (r, t)ψ̂†(r, t)ψ̂(r, t) and

Ŝη =
∫

dr
[
η(r, t)ψ̂†(r, t) + η∗(r, t)ψ̂(r, t)

]
[14]. Ŵ (t) is the interaction term, given in terms

of the field operators by Ŵ (t) = (1/2)
∫

dr1dr2ψ̂†(r1, t)ψ̂†(r2, t)w(r1, r2)ψ̂(r2, t)ψ̂(r1, t).
A couples to the total current density and V to the total particle density. After writing

the ensemble average of the field operator as 〈ψ̂(r, t)〉 =
√
nc(r, t) exp[iϕ(r, t)], we see that

the symmetry-breaking source field η drives both the density of condensate nc(r, t) and its
phase ϕ(r, t); the latter determines the irrotational part vs(r, t) of the velocity field through
vs(r, t) = (h̄/m)∇ϕ(r, t). In the linear regime Ŝη we can write Ŝη =

∫
dr[λ(r, t) · ˆδvs(r, t) +

α(r, t) ˆδnc(r, t)] in terms of the condensate-density operator δn̂c(r, t) = 2Re[〈ψ̂(r, t0)〉 ˆδψ†(r, t)]
and of the irrotational-flow operator ˆδvs(r, t) = (h̄/m)∇δϕ̂ with δϕ̂(r, t) = −Im[ ˆδψ†(r, t)/
〈ψ̂†(r, t0)〉]. The (real) fields α and λ are then related to η by α(r, t) = [nc(r, t0)]−1·
Re[〈ψ̂†(r, t0)〉η(r, t)] and ∇ · λ(r, t) = −2mIm[〈ψ̂†(r, t0)〉η(r, t)] (see [14]).

The quantity needed to deal with time-dependent phenomena in DFT is the quantal action
[8]. According to WKG, this is

Q ≡
∫ τ

t0

dt

〈
ih̄

2

∫
dr

[
ψ̂†(r, t)

∂ψ̂(r, t)
∂t

− ∂ψ̂†(r, t)
∂t

ψ̂(r, t)

]
− Ĥ

〉
. (2)

Following the well-known DFT argument, we shall prove below that the potentials are in
one-to-one correspondence with appropriate gauge-invariant densities (Theorem I); that the
action functional can be written in terms of these densities (Theorem II); and that a practical
scheme can be given to map the interacting system into a non-interacting one driven by
effective potentials which include exchange and correlation (Theorem III).

The action (2) is invariant under the gauge transformation A(r, t) → A(r, t) + h̄∇Λ(r, t)
and V (r, t) → V (r, t)−h̄∂Λ(r, t)/∂t, where Λ(r, t) is a real scalar function such that Λ(r, t0) =
0 mod (2π). The source function η(r, t) transforms into η(r, t) exp[iΛ(r, t)], so that Ŝη is gauge
invariant. The operators transform according to

ψ̂(r, t) → ψ̂(r, t) exp[iΛ(r, t)] (3)

and
ĵ(r, t) → ĵ(r, t) + (h̄/m)ψ̂†(r, t)ψ̂(r, t)∇Λ(r, t) , (4)

with ĵ the paramagnetic current-density operator. We choose the following gauge-invariant
densities: the current density j(r, t) = 〈ĵ(r, t)〉 − n(r, t)A(r, t)/m, the condensate density
nc(r, t) = |〈ψ̂†(r, t)〉|2 and the velocity field vs(r, t) = (h̄/m)∇ϕ(r, t) − A(r, t)/m. The
total density n(r, t) is not an independent quantity, since it is determined by the continuity
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equation. The pair of physical quantities nc(r, t) and vs(r, t) can be replaced by the gauge-
invariant order parameter Φ(r, t) = 〈ψ̂(r, t)〉 exp[−(i/h̄)

∫ t

t0
dt′V (r, t′)]: we shall exploit this

fact whenever convenient. Finally, we stress that vs is the irrotational part of the velocity field.

The role of A and V . – We have already discussed the role of the source field η, which
is characteristic of a neutral superfluid. Before proceeding to prove the TD-DFT theorems,
we pause to discuss the physical import of the fields A and V entering the Hamiltonian (1).
Their meaning is obvious for a superconductor, but needs elaboration for a superfluid. We
use as a guideline for this purpose the linearized two-fluid model below threshold for vortex
formation.

We consider first the vector potential A. As pointed out by Baym while discussing the
rotating-bucket experiment [15], what may create transverse currents in a superfluid is a
spoon-stirring mechanism. Let ω be the stirring angular velocity, with magnitude below the
threshold ωc for vortex formation. If L = mr×j is the angular momentum, the corresponding
Hamiltonian term can be written as

∫
dr ω ·L =

∫
dr j ·(ω×r). Comparing with the minimal

coupling form j ·A in the Hamiltonian (1), the component of A parallel to j is A = mω × r,
namely withm times the rigid-body rotational velocity of the fluid. Since that part of the fluid
which can respond to a transverse probe is by definition the normal-fluid component, ω×r is
the normal-fluid velocity vn and thus A = mvn. This result remains true for a non-rotating
fluid, as demonstrated by Hohenberg and Martin by means of a Galileian transformation [14].

Let us turn to the scalar potential V . The quantity V + h̄∂ϕ/∂t, with ϕ being the phase
of the condensate, is gauge invariant. Therefore, writing the equations in the gauge in which
the scalar potential vanishes corresponds to a Galileian transformation to a reference frame
moving with velocity vs. This fact will be used in the proof of Theorem I below.

From the above arguments regarding the potentials A and V , it follows that ∂(vn −
vs)/∂t = ∂A/∂t + ∇V/m and therefore is gauge invariant. In fact, in the two-fluid model
(with n = ρs + ρn, ρs and ρn being the super- and normal-fluid densities) the gauge-invariant
current density is jr = ρsvs + ρnvn − nvn = ρs(vs − vn). This is the current as seen in a
reference frame which moves with the normal-fluid component and determining one of the
driving forces in the Landau-Khalatnikov equations [16].

We conclude by remarking that a parallel can be made between the two-fluid equations
for neutral superfluids and Maxwell’s equations for charged superconductors. From the above
analysis it turns out that the equation ∇×(E+c−1∂A/∂t) = 0 or else E+c−1∂A/∂t = −∇V
is just the condition for irrotational flow. The “electric field” E is identified with (m/ρs)∂jr/∂t.
As expected, the Maxwell equation for ∇ × B expresses the relation of continuity between
particle and current densities.

After this excursus we return to the basic theorems of TD-DFT for neutral superfluids.

Theorem I. – It states that the densities {d} ≡ {j(r, t),Φ(r, t)} are uniquely related to
the potentials {p} ≡ {A(r, t), V (r, t), η(r, t)}. One has to show that two sets of potentials
{p} and {p′}, which differ by more than a gauge transformation and can be expanded in
Taylor series around t0, determine two different sets of densities {d} and {d′} evolving from
a common initial equilibrium state. While the statement is trivially true at time t0, it is
sufficient to prove it at some time t infinitesimally later than t0 by relating the coefficients of
the Taylor series for the densities to those for the potentials [8].

We thus consider the Heisenberg equations of motion for the densities. The potentials
contribute to the equation for the induced current jα with terms including n∇αV , Aβ∇βjα,
jβ∇αAβ , jα∇βAβ , and (h̄n/m)Aβ∇αAβ . It is evident that the proof will be easier in a refer-
ence frame moving with velocity vs: in this gauge, as already remarked, the scalar potential
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vanishes and j and A are both transverse, so that all the above terms vanish. We proceed
within this gauge, signalled henceforth by a tilde on the potentials.

Since the two sets of potentials are different, their Taylor-expansion coefficients must differ
at some order, say l for Ã and Ã′ and l′ for η̃ and η̃′. It is then sufficient to show, for the lower
among l and l′, that different coefficients in the expansion of the potentials imply different
coefficients in the expansion of the densities [8–10]. In the case l < l′ we have

∂l

∂tl
[j(r, t) − j′(r, t)]t=t0

=
n(r, t0)
m

∂l

∂tl

[
Ã(r, t) − Ã′(r, t)

]
t=t0

, (5)

while in the case l > l′ we have

ih̄
∂l′+1

∂tl′+1
[Φ(r, t) − Φ′(r, t)]t=t0

=
∂l′

∂tl′
[η̃(r, t) − η̃′(r, t)]t=t0

. (6)

As a consequence of eqs. (5) and (6), the set of densities {d} will differ from {d′} at times
infinitesimally later than t0. Hence they are different. This proves Theorem I.

The conclusion thus is that in a superfluid the potentials are unique functionals of the
densities. Since from the Heisenberg equations of motion the field operators are functionals
of the potentials, we may state that the ensemble expectation value of any gauge-invariant
operator is a unique functional of the chosen set of densities.

Theorem II. – It states that i) the action Q in given external potentials can be expressed
as a unique functional Q0 [{d}] of the densities {d} where the superscript 0 indicates the
external potentials; and ii)Q0 [{d}] is stationary with respect to the actual densities {d0} of the
interacting system. The proof precisely parallels that given by WKG for superconductors, once
their complex gap function ∆(r, t) is replaced by Φ(r, t) or by the subset {nc(r, t),vs(r, t)}.

The functional is given by

Q0 [{d}] = R [{d}] −W [{d}] − P 0 [{d}] − S0 [{d}] , (7)

where

R [{d}] ≡ (1/2)
∫ t

t0

dt′
∫

dr〈ψ̂† [{d}] [(ih̄∂/∂t′) − (h̄2/2m)∇2
]
ψ̂ [{d}]〉 + c.c. (8)

and W [{d}] ≡ ∫ t

t0
dt′〈Ŵ [{d}] (t′)〉 are its universal parts, while

P 0 [{d}] ≡
∫ t

t0

dt′
∫

dr

[(
V 0(r, t′) +

1
2m
A02

(r, t′)
)
n [{d(r, t′)}]+

+ A0(r, t′) · (j(r, t′) − n [{d(r, t′)}]A [{d(r, t′)}] /m)
]

(9)

and

S0 [{d}] ≡
∫ t

t0

dt′
∫

dr
[
η0
g(r, t′)Φ∗(r, t′) + η0

g
∗
(r, t′)Φ(r, t′)

]
, (10)

depend on the external potentials. The gauge has been chosen so that the functional V [{d}]
equals the external scalar potential V 0(r, t) and η0

g is defined by η0
g ≡ η0 exp[−(i/h̄)·∫ t

t0
dt′V 0(r, t′)].
Along with the basic idea underlying DFT, Theorem II admits a map of the densities in

the real system onto those of a reference system subject to appropriate potentials. This map
is proven in Theorem III, which defines the so-called Kohn-Sham scheme needed to implement
TD-DFT.
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Theorem III. – It states that there exist unique reference-potential functionals {pR [{d}]}
such that the densities {dR} calculated within the chosen reference system coincide with the
densities {d0} of the real interacting system.

Following again WKG, we first define the action functionalQR [{d}] ≡ RR [{d}]−PR [{d}]−
SR [{d}] for the reference system as in eq. (7) for its interacting analogue. The functional
Q0 [{d}] is written as

Q0 [{d}] = RR [{d}] − P 0 [{d}] − S0 [{d}] −Qxc [{d}] , (11)

thereby defining the exchange-correlation functional Qxc [{d}]. We can now exploit the sta-
tionarity of both QR [{d}] and Q0 [{d}] to obtain a set of equations relating the potentials
{pR [{d}]} to the original external potentials {p0}.

The resulting equations, in addition to V R
[{d0(r, t)}] = V 0(r, t) are as follows:[

δPR [{d}]
δj(r, t)

]
{d0}

=
[
δP 0 [{d}]
δj(r, t)

]
{d0}

+
[
δQxc [{d}]
δj(r, t)

]
{d0}

(12)

and

ηR
g (r, t) +

[
δPR [{d}]
δΦ∗(r, t)

]
{d0}

= η0
g(r, t) +

[
δP 0 [{d}]
δΦ∗(r, t)

]
{d0}

+
[
δQxc [{d}]
δΦ∗(r, t)

]
{d0}

(13)

with its complex conjugate. These equations define the effective exchange-correlation poten-
tials.

We conclude this discussion by noticing that eqs. (12) and (13) have been derived in
a previous paper [13] within a linear-response formulation of TD-DFT for superfluids. In
brief, by writing the microscopic equation of motion for the order parameter in terms of the
condensate self-energy, we proved that the matrix expressing the linear response of nc(r, t) and
vs(r, t) to the symmetry-breaking field η explicitly has the Hohenberg-Kohn-Sham structure.

Reference system. – A suitable choice of the reference system for a superfluid at finite
temperature is provided by the gapless Bogolubov-Popov approximation. This accounts for
the thermally excited non-condensate cloud and satisfies the Hugenholtz-Pines theorem [14].
In this approximation the densities can be written as [17]

nc(r, t) = |Φ(r, t)|2, (14)

vs(r, t) = (h̄/m)∇ϕ(r, t) − AR(r, t)/m (15)

and
j(r, t) = jc(r, t) + j̃(r, t) − n(r, t)AR(r, t)/m . (16)

Here jc(r, t) ≡ nc(r, t)vs(r, t) is the condensate current and

j̃(r, t) =
1

2im

∑
n

[NnUn(r, t)∇U∗
n(r, t) + (Nn + 1)Vn(r, t)∇V ∗

n (r, t) − c.c.] (17)

is the current carried by the non-condensate. In eq. (17) Un and Vn are the Bogolubov
functions and Nn = [exp(En/kBT ) − 1]−1 is the boson thermal factor, with En being the
energy eigenvalues in the Bogolubov-Popov equations (see below) at the initial time t0. Finally,
n(r, t) = nc(r, t) + ñ(r, t), with

ñ(r, t) =
∑

n

[
Nn

(|Un(r, t)|2 + |Vn(r, t)|2) + |Vn(r, t)|2] (18)
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being the non-condensate density. The anomalous density is given by 〈ψ̂(r, t)ψ̂(r, t)〉 =
Φ2(r, t) +

∑
n (2Nn + 1)Un(r, t)V ∗

n (r, t).
In eq. (15) the condensate wave function Φ(r, t) satisfies the Schrödinger equation [18]

ih̄
∂Φ(r, t)
∂t

= LRΦ(r, t) + ηR
g (r, t) , (19)

where LR ≡ −(2m)−1
[
h̄∇ − iAR(r, t)

]2 + V R(r, t) and V R(r, t) = V 0(r, t) + 2
∫

dr′w(r −
r′)n(r′, t) + Vxc(r, t), with Vxc(r, t) being determined from eq. (12). The gauge-invariant
reference source field is ηR

g (r, t) = η0
g(r, t) − Φ(r, t)

∫
dr′w(r − r′)|Φ(r′, t)|2 + ηxc(r, t) =

η0
g(r, t) + δQxc/δΦ∗ (see eq. (13)). In the special case of a point-contact interaction eq. (19)

becomes the well-known Gross-Pitaevskii equation.
The Bogolubov functions Un and Vn satisfy the single-particle coupled equations

ih̄ ∂
∂t

(
Un(r, t)
Vn(r, t)

)
=

( LR − ∫
dr′w(r − r′)Φ∗2(r′, t)

− ∫
dr′w(r − r′)Φ2(r′, t) −LR

) (
Un(r, t)
Vn(r, t)

)
. (20)

We point out that, as a result of imposing gauge invariance, the reference system in eq. (19)
is the same as that in eq. (20).

In summary, we have demonstrated the basic Hohenberg-Kohn-Sham–type theorems un-
derlying TD-DFT for inhomogeneous neutral superfluids at finite temperature below threshold
for vortex formation and proposed an implementation based on a reference system described
by the Bogolubov-Popov theory. We have also explicitly pointed out similarities and differ-
ences with respect to charged superconductors as treated by Wacker et al. [10] and briefly
remarked on the linear-response limit as treated by Chiofalo et al. [13]. A final comment is in
order. For super-critical rotational velocities quantized vortices will appear in the superfluid:
at that point the velocity field vs ceases to be irrotational and acquires a regular contribution
vr describing the velocity of each point of a vortex line as well as a singular contribution due
to the quantized structure of the vortex line [19]. The regular term leads to the well-known
Magnus force on a vortex line [20] and to friction forces between superfluid and normal-fluid
components, which are proportional to vr−vn [19]. Therefore, in order to account for vortices,
the present TD-DFT approach will need extension to include one additional external field and
one additional density variable. We hope to return to this problem in the near future.
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