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5.4 Quantization of Circulation

The velocity v, possesses a fundamental property,

which is characteristi
of superfluid systems: its circulation along any cl e

osed curve I,

C= /P v, dl (5.46)

is quantized: it is equal to an integer
h/m. This important property
the quantization of magnetic fl

The physical origin of the
ering a one-dimensional
form a ring. Since the
from z to (z + L),
form

multiple of a fundamental quantum
i8 the counterpart for the Bose liquid of
ux in superconductors.

quantization is best understood by consid-
system, of length L, which is closed on itself to
wave-function must be unaffected by a translation
any wave vector g can only take discrete values, of the

_2n
g=3n (5.47)
where n is an integer. In order to set u

\ p a superfluid current, we must
mpart to the condensate a non- ,

zero wave vector ¢. The current carried

by the condensate is then equal to
N
J, = Nha (5.48)
It follows from (5.47), that J, is quantized,
Nh
L=n— (5.49)

Because of the factor N in (5.49), the basic quantum of current is a
macroscopic rather than a microscopic quantity. Such a macroscopic effect
of quantization is a direct consequence of the macroscopic occupation of
a single quantum state. If we change the momentum of the latter by one
quantum 27 /L, the corresponding change in current is N times larger. In
a normal system, we can change the momentum of a single particle by an
amount 2r/L: instead of (5.49), the quantum of current is then h/mL.
Since the latter quantum is vanishingly small, the quantization of current
may be ignored on any macroscopit scale.

Let us return to the case of a Bose liquid. The velocity v, is equal

to J,/N. The circulation of the velocity around the ring is simply v,L
and is thus of the form

h
C= n;" (550)
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where 1 is an integer. We have thus proved, in this particular case, that
the circulation of the superfluid velocity v, is quantized in units h/m.

We now proceed to demonstrate the quantization of circulation by a
more general method, one which is not restricted to a one-dimensional
system. Let us replace v, by its expression (5.26); the circulation C along
a closed curve, T, may then be written as

C___fv‘.dl=ﬁfgrads-dl (5.51)
r mJr

mC/A is thus equal to the change of S when one goes around the curve
(which means that S is a multi-valued function). However, the wave-
function of the condensate, equal to ¢*®), must be single valued. Thus, S
can only change by a multiple of 2x when one goes around a closed circuit,
from which fact (5.50) follows directly. The quantization of circulation is
seen to be a direct consequence of the requirement that the condensate
wave-function be single-valued. It thus applies to any distribution of
superfluid current.

The quantization of circulation is a major physical feature of superfluid
flow. Together with the irrotational character of the flow, equation (5.44),
it governs the way in which a superfluid can be set in motion. We shall
illustrate in Chapter 8 the way in which these concepts operate, by con-
sidering a specific example, that of the vortical motion of a superfluid
Bose liquid.

5.5 Flow Without Resistance: Landau Criterion

According to our previous discussion, the wave-function describing a uni-
form translation of the fluid is obtained by rigidly shifting the ground
state in momentum space by an amount mv,. We now inquire to what
extent such a wave-function corresponds to a metastable equilibrium of the
liquid, displaying the characteristic feature of “resistance free flow.” More
explicitly, we ask whether and how the pipe walls could slow dowp -
perfluid flow. We shall thus encounter the important concept of & eritical
velocity, above which superfluid flow becomes unstable. '

Let us consider a simple experiment, in which & Bose liquid flows at
s constant velocity through s thin capillary tube. The corresponding
superfluid velocity v, must be constant throughout the cross-section of
the tube. The superfluid motion is thus & uniform translation, in contrast
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with ordinary viscous flow, for which the fluid velocity varies from the
walls to the center of the tube.

It is clear that any interaction of the fluid with the pipe walls cannot
change the momentum of the condensed phase, as this would involve a
simultaneous transition of the whole liquid, which is highly improbable.
Hence, the only way by which the walls can slow down the flow is by
creating elementary excitations, thereby absorbing momentum and energy
from the uniform motion of the liquid. We are thus led to study the extent
to which the walls can create such excitations.

We may safely assume that the walls are infinitely heavy. Therefore, in
the frame of reference in which they are fixed, they transfer momentum,
but not energy to the system (a point which we have earlier discussed in
connection with the rotating bucket experiment). It is clear that the walls
cannot create quasi-particles as long as the latter have a positive energy
in the pipe frame of reference (since at T = 0 there is nothing to provide
the required energy). Under such conditions, we expect superfluid flow
to be stable—at least against quasi-particle creation. If, on the other
hand, there exist quasi-particle states whose energy in the pipe frame is
negative, multiple excitation processes become possible; they act to damp
superfluid motion.

Thus far we only know the excitation spectrum of the Bose liquid in the
frame of reference in which the condensed phase is at rest (with zero rel-
ative momentum). In that “condensate” frame (which has a velocity v,),
the spectrum is just that found in the preceding section. The spectrum in
the pipe frame may be obtained by means of a simple Galilean transforma-
tion. Let p; be the momentum of a fluid particle, of mass m, as measured
in the condensate frame. In the pipe frame, the system Hamiltonian is:

— (pt"*'mvt)z !-_ ey
H—;-—-——zm—+2§V(r. r;)

N mvf

Y L IS e, |
_Z‘;ﬁ+§§;v(ﬁ L) +P-vet — (5.52)

where p = 3", p; is the net momentum of the fluid particles, as measured
in the condensate frame. If, first, we consider the fluid to be in its ground
state in the condensate frame (with energy E,, momentum p = 0) the
energy of the system as measured in the pipe frame is

2
B+ ';“" (5.53)
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. t a single quasi-particle
way, if we assume there is presen ]
In the same ez:a 2y &,y 88 ed in the condensate frame, the fixeq

:;nb(::rine:l:zeg’to the pipe, will measure a system energy which is
E,+e+v, P+ N',:"'z (5.54)
It follows that in the pipe frame the quasi-particle has an energy
Ep+ P Vs (5.55)
Thus the walls cannot create quasi-particles as long as
&p+ P - Vs > 0 for all values of p (5.56)

If the condition (5.56) is met, we expect superfluid flow to be stable. Such
a criterion was first formulated by Landau in his early work on liquid
helium. '

Let us suppose that the condition (5.56) fails to be satisfied f_or some
particular values of p and v,. In this case, the walls keep crea.tmg x_ww
excitations of wave vector p. As a result, the particular quasi-particle
mode will grow exponentially in time, until that growth is limited by
non-linear effects. The fluid flow is unstable, in that there is a steady
transfer of energy and momentum from the coherent, directed motion of
the condensate to an essentially incoherent group of quasi-particle modes.
The instability corresponds to a transformation of the directed kinetic
energy into heat, a phenomenon which is typical of viscous damping of
fluid flow.

Such an instability, characterized by the sudden onset of viscosity, will
occur when the liquid velocity exceeds a critical velocity, v., which is given

by .
v, = lower limit of —;— (5.57)

For v, < v,, there is no mechanism by which the fluid flow can transfo.rm
its kinetic energy into heat: the flow is superfluid in character, being
characterized by a complete absence of any viscosity.

According to the Landau criterion, (5.57), a free Bose gas S.hOllld not
be superfluid. In that case, &, is equal to p*/2m: for an arbitrarily low ve-
locity v,, one can always find a small enough value of p such that (5.56) is
violated. Such a conclusion is at first sight surprising, since we have seen
in Chapter 4 that a free Bose gas did not respond to a ma.crosco'pic trans-
verse probe; in that respect, it behaves like a genuine superfluid. Thu-s,
there appears to be a contradiction between the two criteria for superfluid
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behavior, (4.10) and (3.5). The answer to th

is paradox is simply that
ground state of the free Bose ply that the

gas is superfluid [as shown by (4.10)], while
it is unstable against any motion of the fluid, however slow. Thgl insta-

bility arises as a consequence of the parabolic nature of the excitation
spectrum, and may be traced back to the absence of compressibility in

the free Bose gas. The latter thus Tepresents a very “pathological” case,

which actually is very sensitive to boundary conditions (it may be shown
that when the criterion

(5.56) is expressed in terms of the true eigenstates
of the liquid in the capillary tube, it is satisfied for low enough velocities
v,). Such difficulties do not arise in the real case of an interacting Bose
liquid: however weak the interaction, it will always give rise to a finite
compressibility and sound velocity. The slope of the quasi-particle spec-
trum near the origin is then finite, so that the critical velocity v, defined
by (5.57), no longer vanishes.

We carried out the previous analysis in a fixed frame of reference, tied
to the walls of the system. It is not uninteresting to consider instead
the problem from the vantage point of the moving fluid. The walls then
appear as massive obstacles which move at velocity —v, relative to the
fluid. The persistence of superfluid flow then depends on the ability of
these moving obstacles to scatter against the liquid.

Instead of a wall, let us consider a massive obstacle of microscopic
size, such that its scattering against the fluid can be treated within the
Born approximation. Such an obstacle behaves as a test particle which is
coupled to the density fluctuations in the liquid. According to the general
discussion given in Chapter 2, Vol. I, the probability per unit time that
the object transfers momentum p and energy

(Mv, +p)? _ M}

=p- 5.5
2M 5 R (5:58)
to the liquid is proportional to the dynamic form factor
S(p,p-vs) (5.59)

[see (1.2.11)]. If spontaneous creation of density fluctuation excitations in
the moving fluid is to be forbidden, then the dynamic form factor for the

fluid must satisfy the condition:
S (p) P V,) =0 (560)

Equation (5.60) represents an obvious generalization of the Landau cri-
terion, (5.56). It governs not only that part of the density fluctuation
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excitation spectrum which corresponds to the creation of a single quasi-
particle excitation, but also the creation of multi-particle excitaf%ons. ‘An
advantage of (5.60) is that it provides an exact form of the stal?xhty crite-
rion even if the single quasi-particle excitations are damped, since (5.60)
governs as well the states into which the excitation dect?ys. B

Actually, the Landau criterion (5.56) is not a sufficient c.:o.nd.xtlon.to
observe superfluidity. It clearly represents & necessary oondmo‘n, which
prevents the spontaneous excitation of quasi-particles by tht.a moving walls.
However, it does not preclude the existence of other excx!;a..tlons, of a lower
energy, which would be excited at lower superﬂl_xid ve]ocxt'les. We shall sce
in Chapter 8 that such excitations do in fact exist. They mv?lve a vortex-
like motion of the superfluid, leading to a sort of superfluid turbule_nce.
Such a turbulence appears at velocities v, much sm?ller than that given
by (5.57), and thus controls the stability of superfluid ﬂow..

The Landau criterion, (5.56), is nevertheless very mPortant, as
it clearly displays the physical origin of superfluid behavior, nfax;ely
the scarcity of low lying excited states (1tself a consequence O os:
condensation). Furthermore, the critical velocity (5.57) m.arks the ons:d
of viscosity in a superfluid Bose liquid (the vortex motion mentlon.
above corresponds to a turbulent non-viscous flow). The propeﬂ':les
discussed in the present chapter are thus essential to our understanding

of superfluidity.

5.6 Condensate Response as Superfluid Motion

In the course of this chapter, we have mentioned several times the illl-
timate relationship between long wave length phono?s and macr.oscoplc
superfluid motion. Such phonons involve a longitudinal superfluid ﬂov'v,
associated with density fluctuations [see (5.18)]. In order to show this
connection more clearly, we consider the response to a weak scalar pcft;rll—
tial (i.e., to a test charge probe). The probe is assumed to be penlc:. ic
in space and time, with wave vector q and frequency w. The perturbing
Hamiltonian may thus be written as

He = a [pte™ +p €] (5.61)

(corresponding to an applied potential @ cos(q-r—wt)). The p'ert.urbation
(5.61) is assumed to act on the ground state 1, of the Bose liquid.
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T, SECOND, AND QUASI-p ,
FIRS SOUND ARTI(;

7.1 Collisionless vs. Hydrodynamic Regimes

We now consider the nature of the excited states of a Bog ligud ¢
finite temperatures. In Chapters 2 and 3, we have discussed the e
particle excitations at finite temperatures. We here wish to conmtn
on the nature of the excited states in the long wave-length limit. ki
the previous chapters, we shall restrict our attention to states frvié
the condensate is very nearly uniform.

We recall that at T = 0, there exists a unique class of excited saia?
the long wave-length limit: one finds phonons at velocity s, themﬂ'
scopic sound velocity. Such wave propagation might be approps®
called quasi-particle sound, since in the long wave-length limit md
density fluctuations of importance are those produced by excitinz"f":
quasi-particle from the condensate. Quasi-particle sound hss esw
the same physical origin as zero sound in a Fermi liquid; the o
force on a given particle comes from the averaged field of “H t:;ﬂu

all see how this comes about in & microscopi

Chapter 9) p‘“ﬂ
soAtdﬁf‘ite _temperatures matters are not quite so simple. Quw
Wl‘ll;h: still a possible mode of excitation of the Bose %" ot
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where 74 is the life time of the quasi-particle excitation
in question. Where this criterion is satisfied, one is effec
lisionless regime in which the nature of the excitations
from that at T' = 0. The quasi-particle sound vel
ture dependent, since the energy of a given quasi-
thermal excitation of other quasi-particles.

Under most circumstances, the above criterion will not be satisfied in
the extreme long wave-length limit: as g9 — 0, g — 0, while 7, will
usually remain finite. Hence in the immediate vicinity of q = 0 one is in
a hydrodynamic regime, in which the restoring force responsible for wave
propagation consists in the frequent collisions between thermal excitations
which act to bring about local thermodynamic equilibrium . As was the
case for the Fermi liquid, one is in the hydrodynamic limit when

(of energy wy)
tively in a col-
is little changed
ocity will be tempera-
particle depends on the

w1

where 7; is the relaxation time required for achieving local thermodynamic
equilibrium. It is clear that to the extent that quasi-particle collisions
provide the mechanism for maintaining such equilibrium, 7, will be the
same order of magnitude as 7.

We shall be interested in the density fluctuation spectrum in these two
limits. We have seen in Sec. 2.6, Vol. I, that the spectrum may be specified
by x"(q,w), the imaginary part of the density-density response function.
In the collisionless regime, we may expect two distinct contributions to
x"(q,w). One is a quasi-particle sound peak, which arises from excita-
tion and de-excitation of single quasi-particles from the condensate. (We
consider only wave lengths sufficiently long that multi-particle excitations
may be neglected.) The other contribution arises from the scattering of
the already thermally-excited quasi-particles. It consists in a continuous
spectrum, extending from the origin to a maximum value, qu,, where v,
is the maximum thermal quasi-particle group velocity; it resembles the
continuous spectrum found for a normal system.

The above separation is directly analogous to that carried out in the
previous chapter for the current-current response functions. It may be
thought of as a generalization of the two-fluid concept to frequency and
wave-vector dependent quantities. We may write:

X'(a,w) = X, (q,w) + Xn(2,w) (7.1)

with x”(q,w), the superfluid component, denoting that part of X" af'i?ing
from excitation of quasi-particles from the condensate. In the colhsxor}-
less regime, the two components of x" will be distinct, the extent of their

R R ...
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overlap being proportional to the (quite-small) probability that a thermal
quasi-particle of momentum q decay into two quasi-particles of momen-
tum q — p and p as a result of scattering against the condensate. We
shall show that these two components satisfy separate sum rules. Un-
like the case at T = 0, sum rule considerations do not enable us to pin
down precisely the quasi-particle sound velocity; they do, however, yield
an order-of-magnitude estimate of the extent of its departure from the
macroscopic, zero-temperature, value s.

In the hydrodynamic regime, one finds two modes of wave propagation,
first and second sound. Superfluid hydrodynamics is richer than its Fermi
liquid counterpart because one can have relative motion of the thermal
quasi-particles and the condensate. In the first sound mode, the normal
fluid and superfluid components move in phase with each other; it will
be seen to be primarily a density wave, which resembles closely the hy-
drodynamic sound mode of a normal liquid. Second sound, on the other
hand, corresponds to an out-of-phase motion of the two components; it
is a wave motion characterized primarily by a periodic variation in the
temperature of the system. One expects to see two peaks in X' (q,w)
at the first and second sound frequencies; however, the amplitude of the
second sound peak will be quite small, since second sound involves only a
very slight fluctuation in the particle density. We shall see that sum rules
permit us to fix the relative amplitudes of these two peaks.

We study first the propagation of first and second sound in the hydro-
dynamic limit and then go on to a consideration of quasi-particle sound
in the collisionless regime. As usual, the transition from one regime to
the other takes place for frequencies w and relaxation times 7 such that
wr = 1. It corresponds here to a transition from first sound to quasi-
particle sound, and will be characterized by a maximum in sound-wave
attenuation. We discuss the experimental evidence for such a transition
at the close of the chapter.

Our considerations will be confined to reversible phenomena. There are,
of course, a wide variety of irreversible phenomena which have as their
physical origin collisions between the thermally-excited quasi-particles.
A most successful phenomenological account of such collisions, and their
consequences, has been developed by Landau and Khalatnikov (1949). We
refer the interested reader to Khalatnikov’s book [Khalatnikov (1965)] for
an account of their theory.
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7.3 Two-Fluid Hydrodynamics: First and Second So

und it
In order to derive the modes of propagation of first and seeo?}ii;omodel
is necessary that one consider the generalizatnon.of the dtv;,o-andau. Vi
to non-equilibrium situations, as set forth by Tisza an \ oot 5 1l
microscopic basis for such a model resembles clos'ely that u Sl
equilibrium situation. The normal fluid consists in the therm q .
particles; if these are in equilibrium in a frame of reference Izzvdmbg X
a velocity v with respect to the condensate, they are descri Y

distribution function

1 (7.2)
(V) = =1

This concept may be generalized to describe a non-equilibrium situation
provided it is such that v and T are slowly-varying functions of space
and time. Such variation should be sufficiently slow that one can still
speak of local thermodynamic equilibrium, a condition which requires that
spatial variations be slow compared to a mean free path, and temporal
variations slow compared to the relaxation time needed to establish such
local equilibrium. One considers as well variations in space and time of
both the density and velocity of the condensate.

We shall here confine our attention to reversible fluid motion; we neglect
the viscous effects which, as we have mentioned, necessarily accompany
motion of the thermally-excited quasi-particles. The four basic equations
which describe fluid flow then take a simple form: two conservation laws
and two dynamic equations. The first conservation law is that of the local
density of the system: 3

p
-V (7.3)

while the second is conservation of entropy. Let the entropy per unit

volume of the system be S; since it is carried solely by

the thermally-
excited quasi-particles, the conservation law reads;
a5 5
7 ==V (3w) (1.4

The first dynamic equation governs conde:
have derived in Chapter 5,

v, 1

il P S

a ="V (“ + 2”"-) (75)
The second dynamic equation governs motion of the entjre liquid ang ig

nsate motion and is that we

dJ
M _dt = _VP
(7.6)
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equations of motion, we find, on combining (7.5) and (7.6),
O _ _Pigpy P
Py = pVP+pSVT 0
dvn Pn Ps
—rfagp. Bogr
o PG (19

We see that a pressure gradient acts to drive both fluids in the gy
direction, while a temperature gradient acts to drive them in oppsiy
directions. This latter aspect may be exhibited explicitly if one multiplis
(7.5) by p and subtracts the resulting equation from (7.6): one finds,
using (7.7),

A temperature gradient acts as an “osmotic” pressure, which tends b

drive the fluids in opposite directions, )
The above set of four basic equations may be reduced to two siopk

differential equations which govern the liquid motion. The first of thet

the density equation of motion, is found by taking the time derivatied
(7.3) and substituting on the right-hand side the appropriate result

(7.6); on keeping only linear terms, one finds thereby
&p )
i =VP

The second, the

entropy equation of motion, is obtained in simil¥ el
from (7.4), (1.9)

» making use of (7.11), we may write it 89

S _Sp . 55 !
= VTt 5



This equation takes a yot simplor form, if one Introduces the ontroj

unit maass, aia
8
- (7.13)
one then finds
s
=S REVT (1.1)

Porlodic solutions for (7.11) and (7.14) are obtained by considoring

small departuros of the prossure and temperature from equilibrium, ac-
cording to

orP opP
6P (3;)361) + ("8—:9-)'65 (7.15&)
ar or

One searches, furthermore, for periodic solutions of the coupled equations,
of the form:

p=po+bpexpli(q-r—uwt) (7.16a)
S=08,+6Sexp[i(q-r—wt) (7.16b)

The resulting density and entropy wave propagation is readily found if
one neglects thermal expansion of the liquid, for then a change of pres-
sure is not accompanied by a change in temperature, and, vice versa, a
change in temperature is not accompanied by a change in density. Such
an approximation is equivalent to assuming that Cp = C,, and is quite
accurate at the very low temperatures we consider. On making it, one
sees at once that temperature and density waves are decoupled.

Indeed, on substituting equations (7.16) and (7.15) into (7..11)
and (7.14), and continuing to keep only linear terms, we find the following
dispersion relations for wave propagation:

Density Waves (First Sound) ;
apP
i d=(5), (r.17)

Entropy Waves (Second Sound)

=8, si= * 2 (%), = z—; (%z) (7.18)
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Tho velocity of the donsity wave s ossontinlly that of the usual firgt
sound wave In a normal liquid; the second sound velocity ts soen to depend
intimatoly on the presonce of a suporfluld component, and vanishes near
the A-point,

On roforring back to (7.10), we soo that in a first sound wave, the normal
and suporfluld components move in phase with ench other: Vp=v, In
a socond sound wave, thoy move out of phase, in such a way that the net
matter transport I8 negligible; according to (7.6),

J=pva+p,v,=0 (7.19)
in a second sound wave.
It 1s not overly difficult to take into account the small coupling between

density and temperature waves. One simply makes use of the complete
equations, (7.15), and finds:

w3 P dp
(—!—”lq - 1) bp + (-og-g)’ (-8—’3),63 =0 (7.20)
ar as w?
— =] p+|373-1]65=0 7.21
(Op)s (8T), g (azq ) (31

The condition that the equations be compatible yields a quadratic equa-
tion for w?, viz:

w? w? C,

ERTERRE R
on making use of the appropriate thermodynamic identities. The right-
hand side of (7.22) is, in fact, very small. It vanishes at T = 0, and
is only 7 x 107* at T = 1.5°K [London (1954)]. As a result, the two
modes of wave propagation are effectively uncoupled, and their velocities
accurately specified by (7.17) and (7.18).

The precise extent to which, for example, second sound involves a den-
sity fluctuation may be determined by simple sum rule considerations
applied to the density fluctuation excitation spectrum. The relevant sum
rules are those derived in Sec. 2.6, Vol. I, which for convenience, we re-
produce here:

[ anqu=12 ()
. 1 [ ¥'(quw)_N
th(l){-;/:w dw—-w }— ;‘;‘5 (7.24)
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one finds readily
C,/Cu—1 (1.27)
- «1
Zi=1-521 (7.28)

for the strength of the two poles in the density fluctuation spectral density.
The result, (7.27), is in full accord with our general conclusion, based on
(7.22), that the admixture of density fluctuation in a temperature wave
will be of order (Cp/C, — 1).

Second sound is one of the most spectacular manifestations of the su-
perfluid behavior of He II. Its propagation has been studied by many
different experimental techniques. In Fig. 7.1 we plot the theoretical vari-
ation of s; with temperature. The experimental results obtained are in
excellent agreement with the theoretical curve down
the order of 0.7°K. Below this temperature,
very simple reason. At such temperatures the
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FIGURE 7.1. The velocity of second sound at the vapor pressure [ofier Ah‘
(1959)].

a temperature pulse of a sort which is consistent with such a physd
picture. g

We note from Fig. 7.1 that in the very low temperature regon T¢
0.5°K), the theoretical value of the second sound velocity approscst
constant; one finds in fact |
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and Wilks (1951, 1952) have shown that under those circumstances sec-
ond sound may be viewed as a compression wave in an “almost ideal”
phonon gas. The relation, (7.29), is then comparable to that which ex-
ists for compression waves in an ideal gas of molecules, where one finds
the familiar relation, ¢ = ;/v/3, between the velocity of the compression
wave and the average speed of a molecule. From this point of view it
is obvious that the mode cannot exist once the phonon mean free path
becomes comparable to the wave-length of the mode.

7.8 Quasi-Particle Sound

We consider now the behavior of the density fluctuation spectrum in the
collisionless regime. We shall be interested in wave lengths A such that
T PL 44 (7.30)
where £ is a coherence length (of the order of the interparticle spacing)
and £ is the mean free path for the quasi-particle excitations under study.
Where (7.30) is satisfied, one is both in the long wave-length regime afxd
the collisionless regime. Under these circumstances, there will be two dis-
tinct contributions to x”(q,w). We have identified these in (7.1) as 8 su-
perfluid part, xJ(q,w), arising from excitation and de-excitation of single
quasi-particles from the condensate, and a normal component, )(,’,!q, w),
produced by the scattering of already thermally-excited quasi-pa.rt.lcles.
The condition, (7.30), is not overly difficult to satisfy in practice. .,It
is met, for example, in the neutron scattering experiments at T1= 1°K
for the lower range of g values studied (0.2 A~! < ¢ 5 0.6 A- ) Let
us consider briefly the finite temperature analysis of such an experiment,
which measures directly the dynamic form factor, S(q,w). -
As for x"(q,w), there will be distinct contributions to L?(q, w), arising
from transitions involving the condensate, and from scattering of the th?r-
mal quasi-particles. Since the latter contribution extends over a contin-
uous range of frequencies, it is not easily separated from the backfround
in an experiment; in practice, one measures only thfe “Bupetﬂl:ﬂd co;n-
ponent, 5,(q,w), associated with the scattering of gingle quasi-particles
in or out of the condensate. Inspection of (1.2.162) shows that we may
write:

5,(qw) = NZy{5(w—wg) + 74 [6 (w —wg) + 6 (w +wy)l} (7.31)

ey St .
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In (7.31) the first term in brackets corresponds to quasi-particle exeitation;
the second and third represent the induced excitation and de-excitation
of single quasi-particles, respectively. The result, (7.31), is the natural
finite-temperature analogue of the single quasi-particle part of S(q,w),
(2.19). Both the quasi-particle energy, w,, and the transition probability,
Z4, depend on temperature, since the interaction of a given quasi-particle
with the thermally-excited quasi-particles will be different from that it
has with the condensate. We shall see that at 1°K, any departures of w,

and Z, from their zero-temperature values are too small to be picked up

in a neutron scattering experiment in the collisionless regime. It is for

this reason that we have taken the measurements of Henshaw, Woods, et

al. at 1°K as a direct measure of the quasi-particle spectrum at T = 0.

Let us emphasize that at wave vectors less than about 0.6 A~!, they have
observed quasi-particle sound.

We note, too, that for temperatures T and wave-vectors ¢ such that

Buwy > 1 (7.32)

thermally-induced excitation and de-excitation of single quasi-particles is
negligible. This condition is likewise met in the experiment of Henshaw
and Woods at 1.1°K. We may thus justify, a posteriori, the use of a “zero-
temperature” dynamic form factor, (2.19), in the analysis of their neutron
scattering experiments.

We turn now to a consideration of the temperature dependence of the
quasi-particle phonon energy, w,, or what is equivalent, the quasi-particle
sound velocity, s(T"). We first establish two new sum rules for x”(q,w) in
the collisionless regime; these permit us to obtain a qualitative measure of
such temperature dependence. We then compare experimental measure-
ments of 8(T) with theoretical calculations of this quantity in the very
low temperature regime in which the only thermal excitations present are
phonons.

To derive the sum rules we note first that current conservation pro-
vides the following relation between X} (q,w), the imaginary part of the
longitudinal current-current response function, and x”(q, w):

x(qw) = %’)(' (q,w) (7.33)

By analogy with (7.1), we can therefore separate x”(q,w) into a super-
fluid and & normal component, associated with condensate transitions

ik ¥ s oYy =
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and thermal quasi-particle transitions respectively. The components xi
and xi obey the separate Kramers-Kronig relations:

-}[M dwx".' (:l (d) = ﬂ(q, 0) (7343)
L /: aw"f(:"") = %(2,9) (7.34b)

Moreover, we have seen in the preceding chapter that in the long wave-
length limit

tim xj(q,0) = xu(2,0) = = 2 (7.358)
lim xj(a,0) = -% (7.35b)

On making use of (7.33) and (7.35), we see that equation (7.34) provides
directly the following sum rules:

i [ [ antitaon] s (7.36)
i [-2 [ @] - 25 (7.37)

The two sum rules represent an effective split-up of the f-sum rule,
(7.23), in the long wave-length collisionless regime, into separate sum
rules for x” and x?. We have therefore only one new sum rule in this
regime. It is natural to inquire for what values of g the various “long
wave-length” sum rules, (7.24), (7.36), and (7.37) are valid. The condition
for their validity is that there exist a local relation between the external
field and the responding quantity. Thus the compressibility sum rule is
valid as long as there exists a local relation between the external force
field and the induced density; the superfluid sum rules are valid when
one has a local relation between the induced current and the external
“vector potential.” Such local relations apply provided the wave-lengths
of interest are long compared to the coherence lengths which characterize
the system under study.

We now consider the information which the long wave-length sum rules
provide on the quasi-particle sound velocity. The superfluid component,
X,(q,w), may be directly obtained from (7.31). We have

' ﬁ(q. w) = —x [S,(q, w) - 5,(q, "’w)]
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=-aNZ,[§ (w—wg) — 6 (w+wy)] (7.38)

On substituting (7.38) into (7.37), we find

wne(3) (2)

A second relation between w, and Z, is provided by the compressibility
sum rule, (7.24). On substituting (7.38) and (7.1) into (7.24), we find:

Z, 1 . (“" Xa(q,w)
= = Xa\S &)
wy 2ms? * 1111-1% 27N J o = (7.40)

The two relations, (7.39), and (7.40) are not sufficient to determine w,,
since we do not know xJ(q,w). We may, however, obtain a rough estimate
of the integral in (7.40) by noting that the transitions contributing to x2
involve the scattering of a thermal quasi-particle from state p to state
(p + q). The corresponding excitation energy is equal to q - v,. We may

thus write _[°° -
b Xa(Qwhwdw
I°° l/,'.(q, w)d“-’ - qz;i
e w

where;"'moftheordetofthetvemgeaquaxedgroupvelocity of thermal
quasi-particles. On making use of (7.36), we find

o [1 [T xa(aw) N
= [?[ - d“’] = ,:;;f = %A(T);? (7.41)

where we have set

8'?
= (7.42)

A(T) is a temperature dependent constant. which } unity, and
T) i ch is of i
which is subject to the inequality, ’ o ot T,

A(T) =

~Am <1 (7.43)

since the left-hand side of (7.40) is

.ti ” s

We = 89 —— = (744)



An approximate microscopic calculation of the temperature-dependent
quasi-particle sound velocity has been given by Hohenberg and Martin
(1964). The present considerations permit one to set 8 lower limit on
8(T); according to (7.43), one has

o()> (2) e (145)

Let us inquire whether such a temperature variation can be seen in neu-
tron scattering experiments. We note that at 1.1°K, where the neutron
scattering experiments have been carried out in the long wave-length
regime, pn/p ~ 1073, We therefore expect a shift from the zero tem-
perature sound velocity which is of the order of 0.1%. Such an accuracy
likely cannot be achieved in neutron experiments. However, to the ex-
tent that one can remain in the collisionless, long wave-length regime at
higher temperatures, one may expect to see a measurable shift in the
quasi-particle sound velocity from its zero-temperature value. Indeed, for
temperatures near the A-point, this sound velocity may tend toward zero,
a temperature dependence which would be strikingly different from that
observed (and anticipated) for the first sound velocity [Atkins (1959)].
The very slight dependence on temperature of the quasi-particle sound
velocity in the low temperature regime (0.1°K to 0.8°K) has been ob-
served by Whitney and Chase (1962), who use direct ultrasonic pulse
experiments to measure the sound velocity at a frequency of 1 Mc. Their
experimental results for the shift in the sound velocity from its zero-
temperature value are shown in Fig. 7.2. Using Khalatnikov’s calculations
for the phonon relaxation times, one finds that wr ~ 1 for T' £ 0.8°K, so
that the decrease observed in that vicinity may be attributed to the onset
of hydrodynamic behavior, while the initial increase clearly takes place
in the collisionless regime. The magnitude of the increase is not large
(~ 1 cm/sec at T = 0.4°K); we now see to what extent it may be ex-
plained theoretically. )
We may attempt an approximate calculation of s(T) by calculating
X.(q,w) for s non-interacting gas of quasi-particles, and thct} using
(7.41) to obtain A(T). By starting with the exact expression for
x"(q,w), (1.2.165), and following steps directly analogous to those used

to derive (6.22), one finds

Xo(qw) = =1 Y (ny = pyq) Fpab (w—qip + ep) (7.46)
a
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FIGURE 7.2. Velocity of sound in liquid helium II. The lower curve shows the
region of the mazimum on an expanded scale [from Whitney and Chase (1962)].

where Fp,q is the matrix element for scattering of a quasi-particle from a
state p to a state p +q,

Fpq=(P+aly_C},oCplp) (7.47)
v

Current conservation provides a relation between Fjq and the correspond-
ing matrix element for the longitudinal current density fluctuation,

(‘m "ep) Fog= (P‘*’Q'z:c:ncy (P/ : '!%) Ip) (7.4%)
14

We now assume that the current fluctuations are symmetric (as would
be the case for non-interacting quasi-particles); the longitudinal current
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fuctuation matrix element should then be equal to its transverse coun-
terpart. According to (6.21) and (6.25), the latter is (p:ng/m). We
therefore would expect, in the long wave-length limit,

P (7.49)

“=mq-V,e,

and

. .p\2
Xa(q,w) = ‘}2 (: 3::_:’)2 (qmp) 6(w—q-Vpe)
P

P 2
1 n ‘l'—)
=_;z’:(§) e (fw-a V) (150

On substituting (7.50) into (7.36), we see that the above expression is
consistent with the normal quasi-particle sum rule, as it should be. We
next evaluate the contribution of x/}(g,w) to the compressibility sum rule,
(7.41). The calculation may be done readily in the temperature regime
in which the only thermal quasi-particles of importance are the phonons,
T < 0.5°K. One finds

AT)=3 (%) (g)2 (7.51)

If we now substitute (7.51) into (7.43), and keep only the lowest order
terms in p,/p, we obtain

8(T) = 5(T) { 1+ %} (7.52)

The non-interacting excitation gas calculation of s(T) thus predicts a
modest increase over the isothermal sound velocity s;; the origin of the in-
crease lies in the fact that at these temperatures the thermal quasi-particle
contribution to the compressibility sum rule increases more rapidly with
increasing temperature than does their contribution to the f-sum rule.
At higher temperatures this is likely not the case.

The shift (7.52) has the right sign to explain the measurements of Whit.-
ney and Chase; however, its magnitude is far too small, since §s at 0.4°K is
of the order of 1 cm/sec. Coherence effects in the scattering of thermally-
excited phonons thus must play an important role. A calculation in which

such effects are taken into account has been carried out by Andreev and
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Khalatnikov (1963); we refer the interested reader to their paper for the
details of the calculation. They find (in c.g.s. units)

s(T) = 5(0) +20 T*In ( 2-%) (T £ 0.5°K) (7.53)

The temperature variation implied by (7.53) is considera'bly more rapid
than that found using (7.52). The agreement with.exp.enment is conse-
quently better, though not perfect, as may be seen in Fig. 7.2.

7.4 Transition from Quasi-Particle Sound to First Sound

We have emphasized that in the vicinity of wr ~ 1, one gets a transition
from quasi-particle sound to first sound. If one works at fixed frequency
and increases the temperature, one expects to find quasi-particle sound at
the lowest temperatures, then a rather complicated transition region, fol-
lowed by first sound in the “high temperature” region for which wr < 1.
We have just seen that the velocity of “sound” measured by Whitney
and Chase, shows a maximum at a temperature such that wr ~ 1. Be-
low that temperature (~ 0.75°K), one finds quasi-particle sound with a
velocity which increases with temperature: above it, the hydrodynamic

sound velocity decreases with increasing temperature, in accordance with
theoretical expectations.

A rather more striking manifestation of the transition region is found in
ultrasonic attenuation experiments. In the very low temperature, quasi-
particle sound regime, the sound wave attenuation will simply be propor-
tional to 1/7, the lifetime of a given phonon at that frequency. On the
other hand, at “high” temperatures where one is in the hydrodynamic
regime, the sound wave attenuation is determined by the appropriate vis-
cosity coefficient. The corresponding attenuation is reduced over that
found in the collisionless regime by a factor of (wr)?, and is therefore pro-
portional to 7. As in the case of the Fermij liquid, the general behavior of

the ultrasonic attenuation coefficient with temperature should therefore
be governed by an expression of the form

Af uip?
T 1 +w2"?=} (7.54

one expects to find a maximum in the ultrasonic
In the region wr ~ 1. This is exactly what is o>
from the results of Chase and Herlin at 12.1 Mo

According to (7.54),
attenuation coefficient
served, as may be seen
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FIGURE 7.3. Attenuation of sound in liguid helium at 12.1 Mc/sec [from
Chase and Herlin (1955)].

shown in Fig. 7.3. Above 0.8°K, the observed attenuation is in good agree-
ment with the theory of Khalatnikov, whose results are shown there. Be-
low 0.8°K, agreement between theory and experiment is not satisfactory,
essentially since new physical processes come into play in the attenuation
of quasi-particle sound at these lower temperatures. Let us emphasize
that we lack a precise treatment of the transition regime, since it com-
prises just that regime for which neither first-sound nor quasi-particle
sound offer an altogether satisfactory description of the system behavior.

CHAPTER 8

VORTEX LINES

8.1 Structure of a Vortex Line

In the preceding chapters, we have discussed at length the longitudinal
oscillations of a superfluid Bose liquid. We now focus our attention on
“steady” superfluid flow, in which the superfluid velocity, v,, satisfies the
equation
divv,=0

Such flow can, in principle, occur only in multiply-connected systems.
However, it is possible to achieve an equivalent situation in the bulk of
the liquid by setting up vortex lines. In a vortez line 7, the fluid rotates
around the curve -; the flow is irrotational everywhere ezcept on y. As
a consequence, the velocity increases as one approaches v. At a small
enough distance, the centrifugal force is (in principle) large enough to
overcome the capillary force, so that one expects to find a narrow cylin-
drical hole in the liquid along the vortex line. The existence of the hole
makes the system multiply connected. Actually, such a picture is physi-
cally false, as the computed radius of the expected hole is comparable to
the interparticle spacing: on such a small scale, the concept of a fluid flow
is meaningless. We should therefore consider a vortex line as an irrota-
tional motion of the fluid around the line v, down to distances at which
the hydrodynamic equations are no longer valid.

It should be realized that vortex lines are not peculiar to superfluids.
They constitute as essential feature of the dynamics of normal fluids, and
have, indeed, been extensively studied since the 19th century. Many of the
results which we shall discuss are actually “classics” of hydrodynamics.

115
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The major new feature brought in by superfluidity, and a most important
one indeed, is the quantization of vortex lines, arising as a consequence
of the quantization of circulation. In cases where quantization may be
neglected, the properties of vortex lines in a superfluid are very close to
those in a normal fluid.
‘We consider first a straight vortex line, in which the fluid rotates around
the z-axis. The superfluid velocity at an arbitrary point M is tangential,
as shown in Fig. 8.1; it depends only on the distance r between M and the

axis of the vortex. In order for the flow to be irrotational, the magnitude
of the velocity must vary as

4|

&
[

(8.1)

where k is a constant. Equation (8.1) is valid for large distances. At
small distances, when r becomes comparable to the coherence length, &,
v, varies rapidly, and the hydrodynamic description breaks down. We
may thus consider that the vortex possesses a core of radius £, inside
which the microscopic structure of the fluid is appreciably altered. For
liquid He II, this core is of the order of a few A wide.

L

Y

FIGURE 8.1. Geometry of a straight vortez line.

8.1] Structure of a Vortex Line 117

The circulation of the velocity (8.1) around a circle of radius r is equal
to 2wk. On taking account of the quantization of circulation, (5.50), we
may write (8.1) as

nh

'J. == E (8-2)

where n is an integer, giving the number of quanta of circulation in the
vortex line (the sign of n determines the direction of the flow). We shall
see that at low enough temperatures, only vortex lines with |n| = 1 are
excited.

The energy per unit length of the vortex line, E, may be interpreted as
a “tension” of the line. The kinetic energy associated with the rotation

is given by
R R
/ 21rrdr£2vf = ﬂn’h’ / & (8.3)
5 2 m A
where R is the radius of the vessel containing the fluid. The integral,
(8.3), diverges for small r; however, there exists a natural cutoff at the
coherence length, §. With logarithmic accuracy, we can thus write
_ N 242 R

E= - hflog 3 (8.4)
In principle, we should add to (8.4) the change in potential energy brought
about by the vortex. Actually, it may be shown that this correction
affects only the immediate vicinity of the core (r ~ £); the corresponding
contribution to the energy is comparable to the uncertainty inherent to
the logarithmic accuracy of (8.4), and may thus be neglected.

To the extent that the finite size of the vortex core may be neglected,
the velocity field v, given by (8.2) satisfies the relation

curl v, = Cné,(r)

(8.5)
where 7 is a unit vector along the vortex axis, while
nh
C=—
— (8.6)

is th? circulation around the vortex line. 63(r) is a two-dimensional &
function in the plane perpendicular to the vortex line. Equation (8.5)
may be extended to describe the properties of curved vortices, such as

;:rten-c rings (a vortex line closed upon itself). In that more general case,
1,(,:,) i8 defined at every point M of the vortex line as a §-function in the
plane normal to the vortex; 5 is a unit vector tangent to the vortex line
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P
FIGURE 8.2. Geometry of a curved vorter line.

at M (Fig. 8.2). The velocity v, created by a curved vortex at a point P
cannot generally be obtained in closed form; however, it may be written
as a line integral along the vortex:

_C [nxr
Vim0 / L &7

(where r is the vector going from M to P). The expression (8.7) is
formally similar to that giving the magnetic field created by a current
carrying wire; its proof is left as an exercise to the reader. The velocity
pattern of such curved vortices is complicated; at a distance r which is
small compared to the radius of the curvature of v, v, may be written as

v,=-§7-r6%2—nxr+\'r (8.8)
The first term on the right-hand side of (8.8) arises from that part of
the vortex which lies in the immediate vicinity of the point P under
study. The other, regular, contribution ¥ describes the velocity created
at point P by the rest of the vortex.

The analysis is easily extended to the case of several vortices. The total
velocity v, is simply the sum of the velocities arising from each vortex.
Let us for instance consider two parallel straight vortex lines v and 7,
at a distance d from each other, possessing respectively n; and n; quanta
of circulation. The net velocity is

Vs=v1+Vvz; (8.9)

i —
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the total kinetic energy per unit length along the vortices is

% // do (1 +v;)? (8.10)

The 'squa.re t_erms in (8.10) correspond to the energy of the single vor-
tex lines, wl‘nle the cross term describes an interaction energy between
?:wo vortex lines. After a straightforward integration, one finds that the
interaction energy is equal to

N R
Ep= 21r;n1n2h2 log i (8.11)

where R is the radius of the vessel. ((8-11) is valid nnly if the two vortex
lines in question are not too close to the vessel boundary.]
The total energy of the two vortex lines is equal to

N
E= %n’ { (nf +n3) log ?R + 2n;n, log g} (8.12)

which we write in the form
N
E= %h’ {(nl +n3)%log ? —2n;n, log ;—1} (8.13)

For a given value of the total circulation, one thus obtains a lower energy
by having two vortices, with n; and n, circulation quanta respectively,
in place of a single one with (n; + ny) quanta. Consequently, the lowest
energy will be achieved by having a large number of vortex lines, each with
a single quantum (n = 1), and no vortices of higher order. At T' = 0, we
thus expect to observe only “elementary” vortex lines, containing a single

circulation quantum.

8.2 Dynamics of a Vortex Line

The motion of a vortex line is governed by a very simple law: each point M
of the vortex moves at the velocity which the fluid possesses at M itself.

More exactly, in the vicinity of M, the velocity v, may be written in
the form (8.8): the point M then moves at velocity #. Consider, for
example, the two parallel vortices described earlier; each moves at the
velocity created at its core by the other. If n; = nj, the two vortices
rotate around each other (Fig. 8.3a); if, instead, n) = —nj, the vortices
are subject to a uniform translation (Fig. 8.3b). Another example of such



